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So what are Formal Methods

« Non snobbish definition
« Math- and logic-based techniques with rigorously established theoretical
foundations
« Used for the specification, development, test and verification of software and
hardware

« Why use formal methods ?
. Non validated software can have dire consequences and mathematical
analysis can contribute to the reliability and robustness
« Some certification standards call for (e.g., DO-178C for avionics) or even
mandate (e.g., ISO/IEC 15408) the use of formal methods



Our lab

« Formal methods for safety and security of software for decades

« Branched into Al trustworthiness in 2017
« About 10 permanent researchers, plus post docs, engineers, PhDs and interns

« Developing tools and methods

Verification Platform Symbolic XAl & uncertainty

Academia
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This session

« No particular background needed

At the end the hope is you
. Know some basic principles of some formal methods
. Can imagine for what they can be used
. Want to know more of the technical stuff

Verification Platform Symbolic XAl & uncertainty

Academia

caisar-platform.com 4
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So why Formal Methods

A critical system is a system whose failure may cause physical harm, economical losses
or damage the environment
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Goal: guarantee that the system respects a safety specification ¢




So why Formal Methods

The Ariane 5 reused the inertial reference platform from
the Ariane 4, but the Ariane 5's flight path differed
considerably from the previous models.

The greater horizontal acceleration caused a data
conversion from a 64-bit floating point number to a 16-bit
signed integer value to overflow and cause a hardware
exception.

The subsequent automated analysis of the Ariane code
(written in Ada) was the first example of large-scale static
code analysis by abstract interpretation.




So why Formal Methods

The Ariane 5 reused the inertial reference platform from
the Ariane 4, but the Ariane 5's flight path differed
considerably from the previous models.

The greater horizontal acceleration caused a data
conversion from a 64-bit floating point number to a 16-bit
signed integer value to overflow and cause a hardware
exception.

The subsequent automated analysis of the Ariane code
(written in Ada) was the first example of large-scale static
code analysis by abstract interpretation.

If you don’t use formal methods, your failure will be in
every presentation of every FM conference.




So HOW Formal Methods (usually)

Specification is
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So WHO Formal Methods
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So for WHOM Formal Methods

RATP
IRS“ @A’RBUSQ Sc
— ALSTOM
DlG/A <'=eDF |
THALES
- i/‘n teD S SAFRAN

AMD n
neider

Electric

%T

SIEMENS

STMicroelectronics

11



So WHICH Formal Methods

Classical program

Explicit control flow
Explicit specifications

Abstractions and well
known concepts

Needs to be robust
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Generated control flow
Implicit specifications

Very few abstractions
and reusability

Needs to be robust
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So WHICH Formal Method for Al
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A brief history of wrong predictions

In 1979:

“[P]rogram verification 1s bound to fail. We can't see how 1t's going

to be able to affect anyone's confidence about programs™

“Social processes and proofs of theorems and programs”, Communications of ACM.
By Richard De Millo, Richard Lipton, and Alan Perlis.
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A brief history of wrong predictions

In 1979:

“[P]rogram verification 1s bound to fail. We can't see how 1t's going

to be able to affect anyone's confidence about programs™

“Social processes and proofs of theorems and programs”, Communications of ACM.
By Richard De Millo, Richard Lipton, and Alan Perlis.

- Distinguished Professor of Computing
at the Georgia Tech
- VP and CTO of Hewlett-Packard

- Yale, Berkeley, Princeton,
Georgia Tech
- Knuth Prize winner

- ACM, Carnegie Mellon, Yale, Purdue
- The first recipient of the Turing Award
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Shifting the social process
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Proof is the focus of the
social process
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Shifting the social process
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Valid scepticism
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Computing, Risk, and Trust
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The first solvers and analyzers were not efficient or scalable.
For example, today’s SAT solvers can automatically solve problem instances
involving tens of thousands of variables and millions of constraints.
* But it wasn’t always the case! We needed to invent DPLL, CDCL, Symmetry
breaking, two-watched literals, WalkSAT, adaptive branching, random restarts,
@ portfolio, divide-and-conquer, parallel local search...
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Restarting Formal Methods for Al

Cambrian explosion: Just in the past few years, more than 20 tools.

Competition for resources: Each paper published increases the scalability.
Cross-fertilization: Good ideas from one tool are implemented in others.

Niche creation: Some solvers are more specialized into particular models and type
of properties.

Adaptative Pressure: New models, new architectures, and in general new Al-
technologies are born every year and the tools to validate them must keep up.
Domestication: ML practitioners should be made aware of the choices in
implementation that can make their models more amenable to FM, so that they
can factor this aspect in their decision process.




Restarting Formal Methods for Al
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o mannnmn and Analysis of Deep Neural Networks
‘('\”.' :..u:. :‘.' REEEE 2019- Dedicated simplex etc. An Abstraction-Based Framework
Reluplex | 8 2 7 798 4 7 9 for Neural Network Verification

Reluplex: An Efficient SMT Solver for Verifying
Deep Neural Networks

2017- inception

2020- Abstractions

| i |
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Restarting Formal Methods for Al

* Artificial Intelligence Safety Engineering (WAISE, at SafeComp)

* AlSafety (at 1JCAI)

* Safe Al (at AAAI)

* Verification of Neural Networks (VNN, at AAAI or CAV)

* Formal Methods for ML-Enabled Autonomous Systems (FOMLAS, at CAV)
* Machine Learning with Guarantees (ML with Guarantees, at Neur|PS)

* Safe Machine Learning (SafeML, at ICLR)

* Privacy in Machine Learning (PriML, at Neurl|PS)

* Security and Safety in Machine Learning Systems (AlSecure, at ICLR)

* Dependable and Secure Machine Learning (DSML, at DSN)
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General picture

Characterization of (Al) trustworthiness

A three-players game

26



Developer’s side

Validator’s side

A three-players game

 What is the architecture of the software, how can it be
modified to be more amenable to verification, will these
modifications cost too much ?
(Activation functions of NN, kernel function of SVM,
etc. )

« What to verify, how to formally specify it, how is it
decomposed in smaller bits?
(Robustness, metamorphism, behavior specification,
etc. )

* How to verify, what methods fit my problem, can the tools
be helped with heuristics?
(Abstract interpretation, SMT solving, symbolic
execution, Constraint programming, etc. )

Object to certify

Properties to verify

Methods and tools

27



The Object

What is the architecture of the software,
how can it be modified to be more amenable to verification,
will these modifications cost too much




The object

Several architecture choices influence what we can do:

« Activation function ? Can we use RelLU ?

« Connectivity ? Fewer connections lead to more scalable verification.

« Number of parameters ? Can we prune the network ?

« The objective function ? Can we modify it so that it does not only learn the goal of the NN
but also “some” information to guide the provers’ heuristics ?

« How was it trained ?




The Property
What to verify,
how to formally specify it,
how Is It decomposed in smaller bits
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Types of properties depend on the structure

Formally specifiable (structured data)

o Semantics (directly related to the
domain) can be described through
math and logic

o Theinputis a distance, a
speed, a physical property
(e.g., an observable), a tabular
data, (e.g., an age), etc.

o Can be proved on all possible
inputs

31



Types of properties depend on the structure

Formally specifiable (structured data) Not directly specifiable (unstructured data)

o Semantics (directly related to the o Semantics is an emerging property (cf
domain) can be described through a molecule of water isn’t wet). e.g. this
math and logic is a cat. The input is a collection of

o Theinputis a distance, a semanticless values (a pixel) that,
speed, a physical property together, can form a meaning
(e.g., an observable), a tabular o Only abstracted properties can be
data, (e.g., an age), etc. described through math and logic (e.g.

o Can be proved on all possible “distance” between two images)
inputs o Cannot realistically be proved on all

possible inputs

32




Structured data

Huge look-up tables replaced with NNs to save space.

Crossrange (kft)
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Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks (2017, Katz, Barrett, Dill, Julian, Kochenderfer)
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Structured data

Huge look-up tables replaced with NNs to save space.

Description: If the intruder is near and approaching from the left, the network
advises “strong right”.

Original Table
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~ ®
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0 10 20 30 —5 0 5} 10 15

D
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@ Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks (2017, Katz, Barrett, Dill, Julian, Kochenderfer)
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Structured data

Huge look-up tables replaced with NNs to save space.

Description: If the intruder is near and approaching from the left, the network
advises “strong right”.
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Structured data

Huge look-up tables replaced with NNs to save space.

Description: If the intruder is near and approaching from the left, the network
advises “strong right”.

|

e . - -

,’ -7 Intruder
’ -

I _ - - 1

I 1

\ !

\ /

A Y a
« Ownship .’
ST -
9 - =

Input constraints: 250 < p < 400, 0.2 < 0 < 0.4, —3.141592 < ¢ <
—3.141592 + 0.005, 100 < vown < 400, 0 < vy < 400.
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Unstructured data

Images, sounds...
How can you formally specify the desirable property “if pedestrian on the road, then brake”?

But you can have different properties : considering notions such as “input space” and “points that are close to
each other”, a property could be “if two inputs are closer than some measure d, they should be classified the

same”. |
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Local robustness or stability

Ideally the selected data to build Distribution
and validate the model is
representative of the intended
distribution.
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and validate the model is
representative of the intended
distribution.

What we want to avoid is a model
that only knows what it was
shown
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shown

How does it behave with the
neighborhood of selected data?




Local robustness or stability

Ideally the selected data to build Distribution
and validate the model is
representative of the intended
distribution.

What we want to avoid is a model
that only knows what it was
shown

How does it behave with the
neighborhood of selected data?

What is it good for?

Can detect this...




Local robustness or stability

Ideally the selected data to build Distribution
and validate the model is
representative of the intended
distribution.

What we want to avoid is a model
that only knows what it was
shown

How does it behave with the
neighborhood of selected data?

What is it good for?

... But doesn’t imply this




Local robustness or stability

Can also generate other data from Distribution
acceptable transformations




Local robustness or stability

Can also generate other data from Distribution
acceptable transformations

To see if the network can handle a
wider distribution.

And we can combine methods




Side note: which phase do we use them ?

Post-conception

Intervals
around data

Transformed
data
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Side note: which phase do we use them ?

Post-conception At conception
Intervals Intervals
around data around data
Transformed Transformed
data data
m Validate m Validate
I | Veleee
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Metamorphic testing

|deal setting for testing:
« Collection of inputs

- Corresponding collection of outputs

Metamorphic testing is used when:
« You don’t know the actual answer (no oracle)

« But you know what properties should be satisfied by the
inputs/outputs

49



Metamorphic testing

|deal setting for testing:
« Collection of inputs

- Corresponding collection of outputs

Metamorphic testing is used when:
« You don’t know the actual answer (no oracle)

« But you know what properties should be satisfied by the
inputs/outputs

4 ’5?‘«‘%1"&\

/\"/""é\'i \

"wi"“'l .
l | —

Let
L (V,V) — Int
be the length of the shortest path
between two vertices, then :

L(a,b) = L(b,a)
For any two points a, b in a graph.

Input symmetry
!
output equality
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Metamorphic testing

|deal setting for testing:
« Collection of inputs

- Corresponding collection of outputs

Metamorphic testing is used when:
« You don’t know the actual answer (no oracle)

« But you know what properties should be satisfied by the
inputs/outputs

4 ’5?‘«‘%1"&\

/\"/""é\'i \

"wi"“'l .
l | —

Let
L (list of V) — int
be the length of the shortest path that
goes through a collection of vertices,
then .

L(c)=L(c)
For any two collections of vertices such
that ¢’ c c.

Input subset
!

output inequality >t



Metamorphic testing applied to Al : AIMOS %Xév

-
Vi

AIMOS (Artificial Intelligence Metamorphic Observing Software) is a tool to assess the stability of Al
systems using metamorphic testing.

m No need to label data for testing.

m Automates the entire process of applying metamorphic properties on the inputs and outputs of models,
comparing them and compiling the results into a stability score.

m Model agnostic (Neural Networks, Support Vector Machines, etc.).

. 52
caisar-platform.com



Metamorphic testing applied to Al

: AIMOS

caisar-platform.com
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Metamorphic testing applied to Al : AIMOS

caisar-platform.com
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Metamorphic testing applied to Al : AIMOS

Transformed input Original input

{ y =px") J {y’ =p'(x) J

Expected output

Predicted output

Comparison

Stability

caisar-platform.com
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Metamorphic testing applied to Al : AIMOS ATX%SV
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Metamorphic testing applied to Al : AIMOS
Easy to use

Written in Python
Model agnostic: only the inference functions are needed.
Built-in support for various frameworks, input formats and model types.

*+ 4 O

Built-in classical transformations (rotation, noise, symmetry, etc.).

caisar-platform.com
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Metamorphic testing applied to Al : AIMOS Afx,év

Easy to use

m With a configuration file

-
Vi

options:
plot: True
inputs_path: "inputs"
transformations:

- name: "gaussian_blur"
fn_range: range(1, 10, 2)

models:
- defaults:
models_path: "models/model.onnx"

. 58
caisar-platform.com



Metamorphic testing applied to Al : AIMOS —\4

Easy to use

m With a configuration file

m As a Python library

A A4

from aimos 1mport core

core.main(
"./inputs",
"./models/model.onnx",
"average_blur",
fn_range=range(1, 10, 2),
plot=True,

caisar-platform.com
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Metamorphic testing applied to Al : AIMOS
Easy to use

- Wlth a Configuration flle AIMOS: Al Metamorphic Observing Software

nputs X o Sty Model stability over gaussian_blur range
0.png 2.8KB Download 3155 — model.onnx
l.png 3.0KB Download
H AS a Python |ibrary 2.png 2.4 KB Download
3.png 2.TKB Download o
4.png 2.TKB Download
5.png 2.9KB Download - 090
With a Graphical User ™"
- p T.png 2.9KB Download
I nte rface B.png 2.5KB Download e
9.png 2.4 KB Download
10.png 2.4 KB Download 0.80
11.png 2.9KB Download
12.png 2.6 KB Download 1 3 H # H 1 7 M H
o o N gaussian_blur range
Models ¥
model.onnx 13 MB Download

Transformation

gaussian_blur X -

Transformation range

Start of the range End of the range Step of the range

<>
<>

1

L4

10 2

Launch AIMOS

60
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Metamorphic testing applied to Al : AIMOS %X,év
Easy to use Vi

{} & caisar-platform.com/aimos-demo/ < W

AIMOS: Al Metamorphic Observing Software

Inputs i Stability

Déposer le Fichier Ici

Cliquer pour Télécharger

= Dataset examples

CIFAR-10 Dataset (500 images)

Models

Déposer le Fichier Ici

Cliquer pour Télécharger

= Model examples

FNN.onnx small_conv.onnx FNN.onnx, small_conv.onnx

Transformation

@ Launch AIMOS
caisar-platform.com



A A4

Metamorphic testing applied to Al : AIMOS Sy
Modular and extensible Ao

Any operation can be replaced with a custom made Python function (loading the model, the inputs, new
metrics, etc.).

def dead_columns(input, columns=np.uint8([50, 100, 1508])):

' Adds dead pixel columns to an image.
input[:, columns, :] = @

return input

. 62
caisar-platform.com



Metamorphic testing applied to Al : AIMOS Af'v()‘sv

-
Vi

AIMOQOS is a tool that can be integrated in the verification and validation process of Al-based components.

m Freely available for teaching and research purposes.

m Integrated in CAISAR, an open-source platform for characterizing safety in Al systems.

CAISAR

. 63
caisar-platform.com



Metamorphic testing applied to Al : AIMOS

The use-case
«  Welding conveyor belt

« Al analysis for detection of faulty welds

 Notification of human expert

64



Metamorphic testing applied to Al : AIMOS

The use-case

«  Welding conveyor belt

‘\' ﬁ 09:58:1

RENAULT 01/06/2(

« Al analysis for detection of faulty welds

 Notification of human expert
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Metamorphic testing applied to Al : AIMOS %Xév

-
Vi

The use-case

» Welding conveyor belt = 3 different production lines called C10, C20 and C34 and

- Al analysis for detection of faulty welds their corresponding weld.

 Notification of human expert m 5 AutoML models and 1 internal R&D composit model
(NN+SVM) per production line.

Lemesle, A., Varasse, A., Chihani, Z., Tachet, D. (2023). AIMOS: Metamorphic
Testing of Al - An Industrial Application. In: Guiochet, J., Tonetta, S., Schoitsch, E.,
Roy, M., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2023
Workshops. SAFECOMP 2023. Lecture Notes in Computer Science, vol 14182.
@ Springer, Cham. https://doi.org/10.1007/978-3-031-40953-0 27 56
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Metamorphic testing applied to Al : AIMOS

The use-case

- Welding conveyor belt m 3 different production lines called C10, C20 and C34 and

- Al analysis for detection of faulty welds their corresponding weld.

 Notification of human expert m 5 AutoML models and 1 internal R&D composit model
(NN+SVM) per production line.

The environment => ODD => properties
- Day light changes + human workers pass by light sources => Robustness to varying brigthness

- Vibrating environment => Robustness to blurring

Lemesle, A., Varasse, A., Chihani, Z., Tachet, D. (2023). AIMOS: Metamorphic
Testing of Al - An Industrial Application. In: Guiochet, J., Tonetta, S., Schoitsch, E.,
Roy, M., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2023
Workshops. SAFECOMP 2023. Lecture Notes in Computer Science, vol 14182.

@ Springer, Cham. https://doi.org/10.1007/978-3-031-40953-0 27 &7
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Metamorphic testing applied to Al : AIMOS

Metamorphic properties

Al Models

Representative
dataset

—s—AutoML1 —e—AutoML2 —s—AutoML3

AutoML4 —=—AutoML5 —=—RD Model

68



Side note: think about the use-case
and careful with transfer learning
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PYRAT: Python Reachability Assessment Tool
Based on Abstract Interpretation

A=

precise analysis false alarm

ACS = PCS AZSbut PCS

71



PYRAT: Python Reachability Assessment Tool
Based on Abstract Interpretation o |

precise analysis false alarm unsound analysis

AC § = PC§ AZSbut PCS ACSbut PZ S
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PYRAT: Python Reachability Assessment Tool
Based on Abstract Interpretation

By
=

We would like to verify a property on the all possible values of inputs x € [a,b] and y € [c,d] In
some program.

e.g.:
X + Yy € [at+c, b+d]

Do the same for all operations in the program.

Use other types of domain for more precision (not just intervals).

= :
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PYRAT: Python Reachability Assessment Tool
Based on Abstract Interpretation p i

Property: “f(y)=100 — Critical vibration frequency ”

f (int y){
INtX, e,
X=3*(y2+1);, = e
If x>100 then .eene

Xx=x+10:
else

X=X-2" e
return X; e

}

= Z



PYRAT: Python Reachability Assessment Tool
Based on Abstract Interpretation

Property: “f(y)=100 — Critical vibration frequency ”

Concret
f(inty){
INt X, e .-2,-1,0,1,2,..
X=3*(y2+1); e 3,6,9,..
if x>100then  .oenie. 102,105,108,..
Xx=x+10; 112,115,118,..
else 0 . 3,6,9..93,96,99
X=X-2, e 1,4,7,..91,94,97
return X, e 1,4,..94,97,112,115..
}
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PYRAT: Python Reachability Assessment Tool

Based on Abstract Interpretation

Property: “f(y)=100 — Critical vibration frequency ”

Concret
f(inty){
INt X, e .-2,-1,0,1,2,..
X=3*(y2+1); e 3,6,9,..
if x>100then  .oenie. 102,105,108,..
Xx=x+10; 112,115,118,..
else 0 . 3,6,9..93,96,99
X=X-2, e 1,4,7,..91,94,97
return X, e 1,4,..94,97,112,115..
}

Intervals

_oo,+oo
3,+
102,+00
112,40
3,99
1,97
1,+0e0

iy

"- 7
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PYRAT: Python Reachability Assessment Tool

Based on Abstract Interpretation

Property: “f(y)=100 — Critical vibration frequency ”

Concret
f(inty){
INt X, e .-2,-1,0,1,2,..
X=3*(y2+1); e 3,6,9,..
if x>100then  .oenie. 102,105,108,..
Xx=x+10; 112,115,118,..
else 0 . 3,6,9..93,96,99
X=X-2, e 1,4,7,..91,94,97
return X, e 1,4,..94,97,112,115..
}

Intervals

_oo,+oo
3,+
102,+00
112,40
3,99
1,97
1,+0e0

modulo

0%1
0%3
0%3
1%3
0%3
1%3
1%3

iy

"-‘
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PYRAT: Python Reachability Assessment Tool
Based on Abstract Interpretation

Property: “f(y)=100 — Critical vibration frequency ”

Concret Intervals
f (int yY{
INt X, e .-2,-1,0,1,2,.. 00 400
X=23* (y2+1), .......... 3,6,9,.. 3,+
if x>100then .. 102,105,108,.. 102,+x
X=x+10; 112,115,118,.. 112,40
else 0 e, 3.6,9..93,96,99 3,99
X=X-2, e 1,4,7,..91,94,97 1,97
return X, e 1,4,..94,97,112,115.. 1,+e0
}

modulo

0%1
0%3
0%3
1%3
0%3
1%3
1%3

By
“—‘

Union of
Intervals
_oo,+oo
3,+
102,+
112,+
3,99
1,97
[1,97]U

[112,+o0f

Conservative over-approximation: the concretization of the abstract domains contains reality

The inverse is not necessatrily true. 1,4..94,97,100,103,106,109,112,115..
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Python Reachability Assessment Tool

Input space

Application to NN
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Python Reachability Assessment Tool

Propagation

Input space

Application to NN

PyRAT
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Python Reachability Assessment Tool
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PYRAT: Python Reachability Assessment Tool
Application to NN

Over approximation Over approximation Over approximation
Input space of reachable states of reachable states of final reachable
at 1st layer at 2nd layer states o
y y Verified property
Propagation N— \_l

Inconclusive

O Falsified property

Desired Concrete
@ space executions 82
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PYRAT: Python Reachability Assessment Tool
Application to NN H .‘I

Guaranteed
to classify to label 8

A shape that abstracts
all possible outputs

A shape that abstracts all
possible perturbations

Input

Not guaranteed
to classify to Iag?)el 8




PYRAT: Python Reachability Assessment Tool

Application to NN _ 9L T < 2 B
Ain = L1 + T2 bin:—.’l:j—.flj'g _2§3;2§2
Qout = Max(ain,0)  boy = max(b,0)

Y = —Aout — bout

Prove that y > —5




PYRAT: Python Reachability Assessment Tool

Application to NN _ 9L T < 2 B
Ain = L1 + T2 bin:—.’l:j—.flj'g _2§3;2§2
Qout = Max(ain,0)  boy = max(b,0)

Y = —Aout — Dout
ain = [-2,2] +[-2,2] = [-4,4
bin = -[-2,2] - [-2,2] =[-4,4.

Uout

b()llt T

Y= Prove that y > —5
B




PYRAT: Python Reachability Assessment Tool
Application to NN

By
"-‘

Artificial Neuron

Xo=1
W, (Bias) y= f(u)
D fwl e w3
£, ) AP = W.X.
U g f(u —— i1
S i=0
X;: Input signal
w;: Weight

u: Internal state
f (u): Activation function
(Sigmoid, ReLU, etc.)
@ y: Output signal 86
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PYRAT: Python Reachability Assessment Tool
Application to NN q i

Aoyt = Max(aiy, 0)

(in A out Y
Qin = L1 + T2 oeeeeeen [_4,4]
inactive active
if dn >Qthen ... 10,4] .
Aout = ,ain .................... ]0,4]
else [_4,0] ReLU : x — max(z,0)
Qo = 0 e [0,0]
[0,4]

87




PYRAT: Python Reachability Assessment Tool

Application to NN _ 9L T < 2 B
Ain = L1 + T2 bin:—.’l:j—.flj'g _2§3;2§2
Qout = Max(ain,0)  boy = max(b,0)

Y = —Aout — Dout
ain = [-2,2] +[-2,2] = [-4,4
bin = -[-2,2] - [-2,2] =[-4,4.

Uout

b()llt T

Y= Prove that y > —5
B




PYRAT: Python Reachability Assessment Tool

Application to NN _ 9L T < 2 B
Ain = L1 + T2 bin:—.’l:j—.flj'g _2§3;2§2
Qout = Max(ain,0)  boy = max(b,0)

Y = —Aout — bout

ain = [-2,2] +[-2,2] = [-4,4,

bin = -[-2,2] - [-2,2] =[-4,4]

Qout — [014]
bout — [0,4]
Y= Prove that y > —5

=



PYRAT: Python Reachability Assessment Tool

Application to NN _ 9L T < 2 B
Ain = L1 + T2 bin:—.’l:j—.flj'g _2§3;2§2
Qout = Max(ain,0)  boy = max(b,0)

Y = —Aout — Dout
ain = [-2,2] +[-2,2] = [-4,4
bin = -[-2,2] - [-2,2] =[-4,4.

Qout — [014]
bout — :0,4]

y = [-8,0] ? Prove that y > —5
&) .



PYRAT: Python Reachability Assessment Tool

By
=

« 2nd at VNNComp 2024
« Written in Python with PyTorch and Numpy backend

« Supports common layers and architecture in ONNX, Keras/Tensorflow and PyTorch

« Different abstract domains implemented: Box, Zonotopes, Constrained Zonotopes, ...

* Integrated in CAISAR, an open-source platform fo.r characterizing safety in Al systems.
&

CAISAR

caisar-platform.com
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PYRAT: Python Reachability Assessment Tool

C {t @& demo.pyrat-analyzer.com

PYRAT

A tool to analyze the robustness

and safety of neural networks.
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PYRAT: Python Reachability Assessment Tool
Use-case: Mooring lines failure detection

aﬁ’;h'uttle Tanker
%Q »@* Production Wells

.+ Water Injection Wells
¢ Gas Disposal Well

By

Northeast

West
Drill Centre Drill Centre
. 7%
.,../.T,-r = o, \\ Casper South
I = DrillCentre
Northwest o i SR Py 2 P
Drill Centre T L v
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PYRAT: Python Reachability Assessment Tool
Use-case: Mooring lines failure detection

Mooring incidents (DeepStar® data from 1997-2012):

107 incidents from 73 facilities across the industry

Potentially dire consequences

Many FPSO have no means of monitoring lines

Those who do face technical problems (robustness of equipment)

vessel

o mooring lines
mooring lines

...................
____________________

......

“risers

umbilical
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PYRAT: Python Reachability Assessment Tool
Use-case: Mooring lines failure detection

By
=

Patented dry monitoring detection systems, based on vessel positions and low-
frequency periods (which can be obtained from Dual GPS)

YAW SWAY

CC —_Rotation CD Translations

Top View
PITCH ;

Profile

ROLL
HEAVE

SURGE

Front View

Profile Front View

B .
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PYRAT: Python Reachability Assessment Tool
~

Use-case: Mooring lines failure detection -
]
o Highly non-linear problem (machine learning
to recognize and classify patterns) Group1 [ ®
©
o Ability to deal with some degrees of variations DGPS W T o @
i Gyrocompass / IMU Mean offset (position) - o —’p
from various system components (such as e Low-frequency periods . - o
. . . . . ——| Mean yaw angle — o o —_—]
mooring line stiffness) and with error or noise <7z, Vessel mass and ARG R — .
. . added mass C o o — |
from monitoring system - Group3 L@
@
o Cover a complete range of vessel drafts, et
roup 4 e
expected vessel responses from environment |

conditions and directions and mooring line
conditions

[ Warning System ]

[ Mooring Integrity ] <—,

Management

The model

o Input: Vessel movement, mass, offset, ...

o Output: group-line failures

= .



PYRAT: Python Reachability Assessment Tool

Use-case: Mooring lines failure detection

Ensuring robustness properties

o Stability of classification in presence of
perturbation

o Perturbation per input (sensor sensitivity)

o Different perturbations for different inputs

(Also verified functional properties but NDA)

By
=

Output Signals

(0 o - 0] Input Layer
bias AN A
Input Signals

©() ®
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T CRCRAL

Rapi

 Property-based testing
SMT Solving

 Abstract interpretation

—
S
\
2
-
\
r
0
L=
N
L
o
£
S
X
L)
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Satisfiability Modulo Theory

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT
problem is a conjunction of clauses. This is called Conjunctive Normal Form.
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Satisfiability Modulo Theory

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT
problem is a conjunction of clauses. This is called Conjunctive Normal Form.

Any logical formula can be converted
iInto Conjunctive Normal Form

=




Satisfiability Modulo Theory

Equivalence rules can be used to translate any formula to
CNF-.

eliminate = A= B=-AVB
reduce the scope of — -(AV B)=-AA-B,
-(AANB)=-AvV-B
apply distributivity Av(BANC)=(AVvB)A(AVO),
ANBVC)=(ANB)V(ANC)

=




Satisfiability Modulo Theory

However, there is a linear time translation to CNF that
produces an equisatisfiable formula. Replace the
distributivity rules by the following rules:

Fllsop ]
Flz|,z & l; op l;
x &L Vi
-z Vi Vi, -l vz,-l;Vzx
< AL
-z Vi, -z Vij-l; V-l Ve

(*) x must be a fresh variable.

=




Satisfiability Modulo Theory

Translation of (pA(qVr)) Vi:

(pA(gVvr)) Vi

(pAx)VE,Z1 S qVT

ToVi,To & PAZ1,Z1 S qVT

To VI, 2o VP, XV, pV-21VI,T1qVT

o VE,—~x2 Vp,~x2VI1,7pV 21 VI2,x1VGVT,~qVIT1,TVIH

=



Satisfiability Modulo Theory

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. atb’+c). A SAT
problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such
as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.
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Satisfiability Modulo Theory

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. atb’+c). A SAT
problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such
as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a+b Decide a
b'+cC
c+e
c+a’
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Satisfiability Modulo Theory

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. atb’+c). A SAT
problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such
as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

b Decide a
b+c Implies...
C+e * bistrue

e cIs false
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Satisfiability Modulo Theory

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. atb’+c). A SAT
problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such
as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

b Decide a

C Implies...
C+e * bis true
o e cistrue

e cIs false
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Satisfiability Modulo Theory

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. atb’+c). A SAT
problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such
as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

b Decide a

=> Contradiction.
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Satisfiability Modulo Theory

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. atb’+c). A SAT
problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such
as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a’+b e
b'+cC
ct+e
c'+3’ Backtrack

=> Contradiction.
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Satisfiability Modulo Theory

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. atb’+c). A SAT
problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such
as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a+b

b'+c Now we know :

c+re a must be false
C,+a,
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Satisfiability Modulo Theory

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. atb’+c). A SAT
problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such
as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

b'+c Now we know :
c+re a must be false
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Satisfiability Modulo Theory

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. atb’+c). A SAT
problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such
as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

b’+C
c+e

Decide b
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Satisfiability Modulo Theory

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. atb’+c). A SAT
problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such
as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

C Decide b
c+e

mplies
e CIStrue
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Satisfiability Modulo Theory

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. atb’+c). A SAT
problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such
as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

C Decide b
cte |
mplies
e CIStrue

Then e can have any value
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Satisfiability Modulo Theory

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. atb’+c). A SAT
problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such
as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a+b |

b'+C So now the assignments are
« False: a, True: b, c, e

c+e

T * False:a, e, True: b, c
C ta
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Satisfiability Modulo Theory

if (c0) false
if (c0) x1=1;vy1l=1; if (c0)
x=1;y=1; else true JR—. false
else if (cl) ﬂﬂ,
lfii;} . - el};i—Z FV2=2; ! ) Vtrue\ !
rY=4q x=1; x=2; x=3;
else .x3=3;y3=3,j [ y=1; J . y=2; ) [ v=3; J
x=3;Vy=3; xd=1te (c0,xl,1te(cl,x2,x3));
assert (x==vy) ; yvd=ite (c0,yl,ite(cl,v2,v3)); [assert\(fx—— 7k
assert (x4==vy4) ; — Y F

5

co — x4 =1 co — Y4 =1
g ANCl — Xq4 =2 —cg N €1 — Ygq = 2
—cg A1 > x4 =3 —co A ] > Yq4 =3

Control flow-guided smt solving for program verification (2018, Chen, Jianhui, and Fei He)

=




Satisfiability Modulo Theory

if (c0) false
if (c0) x1=1;vy1l=1; if (c0)
x=1;y=1; else true JR—. false
else if (cl) ﬂﬂ,
lfii;} . - el};i—Z FV2=2; ! ) Vtrue\ !
rY=4q x=1; x=2; x=3;
else .x3=3;y3=3,j [ y=1; J . y=2; ) [ v=3; J
x=3;Vy=3; xd=1te (c0,xl,1te(cl,x2,x3));
assert (x==vy) ; yvd=ite (c0,yl,ite(cl,v2,v3)); [assert\(fx—— 7k
assert (x4==vy4) ; — Y F

5

2777

0 =1 0=t
g ANCl — Xq4 =2 —cg N €1 — Ygq = 2
—cg A1 > x4 =3 —co A ] > Yq4 =3

Control flow-guided smt solving for program verification (2018, Chen, Jianhui, and Fei He)
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Satisfiability Modulo Theory

SMT Solver lmpl.
SAT Solver * Theory solvers

Arithmetic BitVector
Solver

Uninterpre
ted Function

Solver .
f0" read, write

* SAT solver is responsible for Boolean reasoning
* Theory solvers are responsible for handling specific functions/relations etec.




Satisfiability Modulo Theory
x>0,y=x+1,(y>2vy<1)
@ Abstract (aka “naming” atoms)

p]_l pz; (p3V p4) plz(XZO), pZE(V=X+ 1).'
N,/ P3=(y>2),p,=(y<1)

SAT ljl>F1fi:\55|§nmepnt ; j> x>0,y=x+1,

Solver bR e (y>2),y<1
New Lemma <] Unsatisfiable @ Theory
—pvV=pv—p, U x20,y=x+1,y<1 Solver

Images from Leonardo de Moura
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Satisfiability Modulo Theory

Specification is

u [ Virr': glaetr:n j < violated
Program Specification is
verified
sets of inputs T 3
FO rmal meth OdS Certified answer

D @I VoreD

=



Satisfiability Modulo Theory

> Verification

Program

sets of inputs T

D Specification @I

.  propertyis
Encode.the / verified
opposite
PP \' UNSAT
Th Boolean
CONY oAt
solver solver
UNSAT Add

Counterexample
found
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Satisfiability Modulo Theory
Artificial Neuron

y=f(u)
I N
_U_J f (u) "L" U :Zwl‘xz
| i=0
X;: Input signal
w;: Weight

u: Internal state

f (u): Activation function
(Sigmoid, ReLU, etc.)

y: Output signal

=




Satisfiability Modulo Theory

iInactive active

ReLU : x — max(z,0)

=




Satisfiability Modulo Theory

We know how to encode an ite already:
y = If (x <0) then 0 else x

Becomes

(x<0)=>(y=0)

(x>=0)=>(y=x)

Which becomes

Not (x<0)ory =0

Not (x>=0) or y = X

We now that the relu is just a max, which is just an ite.
So let’s speak simpler
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Satisfiability Modulo Theory

Prove that y > —5

125



Satisfiability Modulo Theory

— 2 S I g 2
Ain = T1 + T2
Aout = Max(ajy, 0)

—2 <12y <2 Yy < —9H

bin = —I1 — T2 Y = —Qout — bDllt

Dout = max(bim 0)

Prove that y > —5

Piecewise Linear Neural Network verification: A comparative study (2017, Bunel, Turkaslan, Torr, Kohli)
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Satisfiability Modulo Theory

— 2 S I g 2
Ain = T1 + T2
Aout = Max(ajy, 0)

—2 § L9 S 2 Yy < —9
bin = —21 —22 Y= —
Dout = max(bim 0)

Prove that y > —5

Piecewise Linear Neural Network verification: A comparative study (2017, Bunel, Turkaslan, Torr, Kohli)
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Satisfiability Modulo Theory - SMT-Lib Standard

—2<x1 <2 —2 <129 <2 y < —H
Ain = T1 + T2 bin = —T1 — T2 Y = —Qout — Dout
Aoyt = max(aina 0) bout = ma’X(bina 0)
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Satisfiability Modulo Theory - SMT-Lib Standard

—2<x1 <2 —2 <129 <2 y < —H
Ain = T1 + T2 bin = —T1 — T2 Y = —Qout — Dout
Aoyt = maX(aina 0) bout = max(bim 0)

(declare-fun x1 () Int)
(declare-fun x2 () Int)
(declare-fun ain () Int)
(declare-fun aout () Int)
(declare-fun bin () Int)
(declare-fun bout () Int)
(declare-funy () Int)

=



Satisfiability Modulo Theory - SMT-Lib Standard

—2<x1 <2 —2 <129 <2 y < —H
Ain = T1 + T2 bin = —T1 — T2 Y = —Qout — Dout
Aoyt = maX(aina 0) bout = max(bim 0)

(declare-fun x1 () Int)
(declare-fun x2 () Int)
(declare-fun ain () Int)
(declare-fun aout () Int)
(declare-fun bin () Int)
(declare-fun bout () Int)
(declare-funy () Int)

(define-fun relu ((res Int)) Int (ite (>res 0 ) res 0))

=



Satisfiability Modulo Theory - SMT-Lib Standard

Ain = T1 T+ T2 bn = —T1 — T2 Y = —aout — bout
Qout = Max(ain, 0) bout = max(biy,0)

(declare-fun x1 () Int) (assert (<= (- 2) x1))

(declare-fun x2 () Int) (assert (<= (- 2) x2))

(declare-fun ain () Int) (assert (<= x1 2))

(declare-fun aout () Int) (assert (<= x2 2))

(declare-fun bin () Int)
(declare-fun bout () Int)
(declare-fun y () Int)

(define-fun relu ((res Int)) Int (ite (>res 0 ) res 0))

=



Satisfiability Modulo Theory - SMT-Lib Standard

—2 < 1x9 < 2 y < —5

Y = —Qout — bout
Dout — IIlE:LX(bim 0)

(declare-fun x1 () Int) (assert (<= (- 2) x1))
(declare-fun x2 () Int) (assert (<= (- 2) x2))
(declare-fun ain () Int) (assert (<= x1 2))
(declare-fun aout () Int) (assert (<= x2 2))
(declare-fun bin () Int)

(declare-fun bout () Int) (assert (= ain (+ x1 x2)))
(declare-funy () Int) (assert (= bin (- x1 (- x2))))

(define-fun relu ((res Int)) Int (ite (>res 0 ) res 0))

=



Satisfiability Modulo Theory - SMT-Lib Standard

Qijn — L1 +— T2 bin = —T1 — T2 Y = —Qout — Dout
o = (D) = (0
(declare-fun x1 () Int) (assert (<= (- 2) x1)) (assert (= aout (relur ain)))
(declare-fun x2 () Int) (assert (<= (- 2) x2)) (assert (= bout (relur bin)))
(declare-fun ain () Int) (assert (<= x1 2))
(declare-fun aout () Int) (assert (<= x2 2))
(declare-fun bin () Int)
(declare-fun bout () Int) (assert (= ain (+ x1 x2)))
(declare-funy () Int) (assert (= bin (- x1 (- x2))))

(define-fun relu ((res Int)) Int (ite (>res 0 ) res 0))
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Satisfiability Modulo Theory - SMT-Lib Standard

Qin = T1 + T2 bin = —T1 — X2 Y = —Qout — Dout
Aoyt = Max(ajy, 0) bout = max (b, 0)
(declare-fun x1 () Int) (assert (<= (- 2) x1)) (assert (= aout (relur ain)))
(declare-fun x2 () Int) (assert (<= (- 2) x2)) (assert (= bout (relur bin)))
(declare-fun ain () Int) (assert (<= x1 2))
(declare-fun aout () Int) (assert (<= x2 2)) (assert (= y (- aout (- bout))))
(declare-fun bin () Int)
(declare-fun bout () Int) (assert (= ain (+ x1 x2)))
(declare-funy () Int) (assert (= bin (- x1 (- x2))))

(define-fun relu ((res Int)) Int (ite (>res 0 ) res 0))
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Satisfiability Modulo Theory - SMT-Lib Standard

— 2 S I g 2
Ain = T1 + T2
Aout = Max(ajy, 0)

(declare-fun x1 () Int)
(declare-fun x2 () Int)
(declare-fun ain () Int)
(declare-fun aout () Int)
(declare-fun bin () Int)
(declare-fun bout () Int)
(declare-fun y () Int)

bin = —T1 — T2 Y = —Qout — Dout
Dout = max(bim 0)

(assert (<= (- 2) x1)) (assert (= aout (relur ain)))
(assert (<= (- 2) x2)) (assert (= bout (reluR bin)))
(assert (<= x1 2))

(assert (<= x2 2)) (assert (= y (- aout (- bout))))
(assert (= ain (+ x1 x2))) (assert (<=y -5))

(assert (= bin (- x1 (- x2))))

(define-fun relu ((res Int)) Int (ite (>res 0 ) res 0))
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Satisfiability Modulo Theory - SMT-Lib Standard

Qin — T1 + T2 bin = —x1 — T2 Y = —Qout — Dout
Aoyt = Max(ajy, 0) bout = max(biy,0)
(declare-fun x1 () Int) (assert (<= (- 2) x1)) (assert (= aout (relur ain)))
(declare-fun x2 () Int) (assert (<= (- 2) x2)) (assert (= bout (relur bin)))
(declare-fun ain () Int) (assert (<= x1 2))
(declare-fun aout () Int) (assert (<= x2 2)) (assert (= y (- aout (- bout))))
(declare-fun bin () Int)
(declare-fun bout () Int) (assert (= ain (+ x1 x2))) (assert (<=y -5))
(declare-fun y () Int) (assert (= bin (- X1 (- X2)))) (check-sat)

(define-fun relu ((res Int)) Int (ite (>res 0 ) res 0))

=



Tedious isn’t it...
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CAISAR

Characterizing Artificial Intelligence Safety and Reliability

A federative platform for analysis of artificial intelligence system components




What CAISAR is

Principle: Maximize coverage of Al models and properties
- Common expressive specification language

- Easy extensibility through clear interfaces

- Heuristic-aided V&V analysis

- Common aggregation of analysis outputs

Target: SVM, Neural Networks, XGBoost models, ensemble models,...
Application: depending on the used plug-ins. Currently includes

«  SAVer for SVM

«  Colibri for XGboost

«  PyRAT, AB-Crown, Nnenum, Marabou for NN

Background: The federative platform strategy for V&V has been successful for critical SW (see, for example, Frama-C and Why3)
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What CAISAR is
Characterizing Al Safety And Robustness

Aimed at all Al systems

While the current frenzy of Al trustworthiness
is mostly Focused neural networks, our
industrial partners can also use other types of
Al (e.g. SVM, XGBoost) in their products. This is
why CAISAR targets a wider range of Al

Standard oriented

By relying on Al standards (ONNX, NNnet) and
formal methods standards (SMT, CP), CAISAR
maximizes the potential for inclusiveness. Any
tool that supports these standards is a
potential addition to the CAISAR platForm.

systems.

Interoperability

An internal representation for property
language and Al representation helps reinforce
the synergy between the different tools in
CAISAR, where one analyser can rely on, and
complement, the partial output of another.

Modular and extensible

Written in the Ffunctional language OCaml,
adding a verification, analysis or testing
software to CAISAR's toolsuit is made easier
through a unified interface, and an
instantiation guided by data-types.

Maintainable

Functional programming provides easy
mathematical reading, lowering the entry
barrier For understanding the inner workings of
CAISAR. Strong typing also minimizes errors
with informative messages.




What CAISAR is
Characterizing Al Safety And Robustness

Property o¢;.

— Description: If the intruder is distant and is significantly slower than the
ownship, the score of a COC advisory will always be below a certain fixed

threshold.
— Tested on: all 45 networks.
— Input constraints: p > 55947.691, vgwn > 1145, vy < 60.
— Desired output property: the score for COC is at most 1500.
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let function normalize_ t (i: t) (mean: t) (range: t) : t =

(i .- mean) ./ range

let function denormalize_t (i: t) (mean: t) (range: t) : t =
(i .+ range) .+ mean

let function normalize_input (i: input) : input =
Vector.mapi 1 normalize_by_index

let function dencormalize_cutput_t (o: t) : t =

denormalize t o

(7.51888402010059753166615337249822914600372314453125:t)
(373.9499200000000200816430151462554931640625:t1)
let runPl (i: input) : t

requires { has_length 1 5 }

(+ constraints the inputs to respect the specification #)

requires { valid_input 1 }

requires { intruder_distant_and_slow 1 }

ensures { result .< (1500.0:t) } =
let 7 = normalize_input i in
let 0o = (nn @@ J) [clear_of_conflict] in

EH (denormalize_output_t o)
142




What CAISAR is
Characterizing Al Safety And Robustness

goal pruned:
C5V.forall dataset (fun _ e —
forall perturbed_e.
has_length perturbed_e (length e) —
FeatureVector.valid feature_bounds perturbed e —
let perturbation = perturbed_e - e in
ClassRobustVector .bounded _by_epsilon perturbation eps —

let ocut_1 = nn_l@@perturbed_e in
let out_2 = nn_Z@@perturbed_e in
.— delta .< out_1[0] .- ocut_2[0] .< delta

Fig. 13: A WhyML specification with several NNs at once
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What CAISAR is
Characterizing Al Safety And Robustness

goal splitted:
CSV.forall dataset (fun 1 e —
forall perturbed_e.

has_length perturbed e (length e) —
FeatureVector.valid feature_bounds perturbed e —
let perturbation = perturbed_e - e in
ClassRobustVector .bounded_by_epsilon perturbation eps —
let ocutl = pre_nn@@perturbed_e in
let ocut2 = post_nn@@outl in
forall j. Label.valid label_bounds 7 — j # 1 —
out2[1l] .> out2[j]

Fig. 14: A WhyML specification for the composition of NNs
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What CAISAR is (going to bhe)
Characterizing Al Safety And Robustness

Specification

ONNX NNs,
SVMs,

Boosted trees

WhyML Specification

Built-ins
interpretation

SVM and ONNX
parsing

vcG

CAISAR

Splitting

Interpreted 3 {“TD @Tf\x @@\

specification

A

Input/output size

Neural Intermediate Representation
NIR

NIR to WhyML
translation

NIR & WhyML

— » automated
rewriting

SMT Provers

CV(C5,723,
COLIBR],...
UNKNOWN
Provers
avery : SAT
command .
line UNSAT ;
builder . Additional info :

—>§ VNNLIB Provers
Pyrat, Marabou,...
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Our lab

Verification of safety | Metamorphic testing Open-source, Open-source Case-based
and robustness applied to Al modular, extensible Symbolic Al tools, reasoning,

formal specifications (Available for platform to Safe-by-design explainability, out-of-
through Abstract teaching) Characterize Al Safety Constraint solvers distribution detection
Interpretation And Robustness

Colibri & co ~  PARTICUL

Symbolic XAl & uncertainty

caisar-platform.com 146




Symbolic Al: Colibri’s

Principle: Safe-by-design Symbolic Al through a constraint solving
library

- Separately prove, in Why3, the necessary bricks for constraint
solving: Floating-point numbers, integers, bit-vectors, strings, etc.

- Allow for selection of these bricks to tailor the construction of a
solver to the needs of the user

- Automatically extract a C implementation of the solver
Target: XGBoost models, embedded software

Application: Energy sector (e.g., IRSN), space (e.g., NASA). Can
also be used as a verification tool (winner of SMT-Competition since
2017), which makes it an essential brick of other tools such as
Frama-C and GATeL.

Background: Constraint solving is used in several critical software
domains

Colibri.frama-c.com
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“ Cool, but where do | start ?

Potential user
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Who are you? What do you want?

« You’re a student, a researcher, or a professional who want to evaluate solutions...
- You want automatic test generation with AIMOS or verification with PyRAT: free licence available
- You want a more general way of testing and verification: CAISAR is open-source
« You want to play around with XAl methods : CaBRNet is open-source

- You're a teacher and want to use tools in lab sessions for your students
- Same as above but there are also course material available that we can help you adapt

« You're a professional who wants to use tools in a production setting
- Open-source platforms and their documentations are available, support licenses are possible
« License is possible for closed-source tools PyRAT and AIMOS

« When in doubt: contact us | Zakaria.chihani@cea.fr
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Not the complete picture...

“Traditional” human-written software

General purpose provers and platforms (Why3, Alt-Ergo, Z3, Colibri, TLA*, K-framework,...)
T

B-Method Krakatoa, aiT WCET analyzers
OpenJML Frama-C, CompCert
(Ja\g programs) Astrée (Compilation of C)(Si%:: BAP BINSEC

SPARK

Papvrus (Ada programs) Polyspace
24 GATeL (C/C++ programs) CoVaC Unisim
SCADE (Lustre programs) ova Miasm

(Compiler validation)
SIIEICPN High level (model... source code... -__mm» Machine

microkernel)

ReluVal
CNN-Cert Planet New Passive and Active Attacks on Deep Neural Networks in
i icati EXPLOITING VERIFIED NEURAL NETWORKS VIA FLOATING
Medical Applications
. ' POINT NUMERICAL ERROR
Not NN Neurif Eran PYRAT i
y Cheng Gongye, Hongjia Li, Xiang Zhang, Majid Sabbagh, Geng Yuan, Xue Lin, Thomas Wahl, and TECHNICAL REPORT
Yunsi Fei o
Sherlock
. Kai Jia Martin Rinard
M I PVe rlfy 3 MIT CS.AIL ) MIT (:SA[]T
jiakai@mit.edu rinard@csail .mit.edu
Tute m Static Inference of Numeric [mvariants byl

Differentiable Abstract Interpretation for Provably Robust Neural Networks

Musilen Mirnsan | Timsom Gehe ! Martin Vesher !

Bit-Flip Attack: Crushing Neural Network with Progressive Bit Search

D NN Adnan Siraj Rakin', Zhezhi He! and Deliang Fan
GPUVerify: A Verifier for GPU Kernels *

Symbolic Execution for Deep Neural Networks|

Dibvya Gopirsh!, Kaiyuan Wang! Mergshi Zhang?. Corina & Pisiseam’ . Sarfrss Khurshicl!

Symbolic Execution for Importance Analysis and

Adversarial Generation in Neural Networks 1

Machine generated models Adam Betts!  Nathan Chong'  Alastair F. Donaldson'  Shaz Qadeer? Pilighomson

i, Mengshi Zhuag!. Kaiyusn Wang!, lsmet Burak Kdrea!, Cocina S, Pisireanu, Sarfrax Khurshi




