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So what are Formal Methods

 Non snobbish definition 

 Math- and logic-based techniques with rigorously established theoretical 

foundations

 Used for the specification, development, test and verification of software and 

hardware

 Why use formal methods ?

 Non validated software can have dire consequences and mathematical 

analysis can contribute to the reliability and robustness

 Some certification standards call for (e.g., DO-178C for avionics) or even 

mandate (e.g., ISO/IEC 15408) the use of formal methods
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 Formal methods for safety and security of software for decades

 Branched into AI trustworthiness in 2017

 About 10 permanent researchers, plus post docs, engineers, PhDs and interns

 Developing tools and methods

Verification Test Platform Symbolic XAI & uncertainty

Academia

Industry

caisar-platform.com
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 No particular background needed

 At the end the hope is you

 Know some basic principles of some formal methods

 Can imagine for what they can be used

 Want to know more of the technical stuff

Verification Test Platform Symbolic XAI & uncertainty

Academia

Industry

caisar-platform.com
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Rapid intro to FM

Examples for this talk: 

• Property-based testing

• Abstract interpretation

• SMT Solving
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The Ariane 5 reused the inertial reference platform from 

the Ariane 4, but the Ariane 5's flight path differed 

considerably from the previous models.

The greater horizontal acceleration caused a data 

conversion from a 64-bit floating point number to a 16-bit 

signed integer value to overflow and cause a hardware 

exception.

The subsequent automated analysis of the Ariane code 

(written in Ada) was the first example of large-scale static 

code analysis by abstract interpretation.
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The Ariane 5 reused the inertial reference platform from 

the Ariane 4, but the Ariane 5's flight path differed 

considerably from the previous models.

The greater horizontal acceleration caused a data 

conversion from a 64-bit floating point number to a 16-bit 

signed integer value to overflow and cause a hardware 

exception.

The subsequent automated analysis of the Ariane code 

(written in Ada) was the first example of large-scale static 

code analysis by abstract interpretation.

If you don’t use formal methods, your failure will be in 

every presentation of every FM conference.
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Good old fashioned math 

and logic, whiteboard and 

paper: 

Proof is the focus of the 

social process

• Sharing 

• Checking 

• Collaborating 

• Reusing

• Inspiring 

Proof
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Shifting the social process

Good old fashioned math 

and logic, whiteboard and 

paper: 

Proof is the focus of the 

social process

• Sharing 

• Checking 

• Collaborating 

• Reusing

• Inspiring 

Formal methods: 

Prover is the focus

With some focus on 

proofs

Proof

Proof

Prover

PyRAT
AB-Crown

Proof that my C code 

never fails with a division 

by zero

21
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Characterization of (AI) trustworthiness
A three-players game

General picture

26
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Properties to verify

Methods and tools

Object to certify
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• What is the architecture of the software, how can it be 

modified to be more amenable to verification, will these 

modifications cost too much ?

(Activation functions of NN, kernel function of SVM, 

etc. )

• What to verify, how to formally specify it, how is it 

decomposed in smaller bits?

(Robustness, metamorphism, behavior specification, 

etc. )

• How to verify, what methods fit my problem, can the tools 

be helped with heuristics?

(Abstract interpretation, SMT solving, symbolic 

execution, Constraint programming, etc. )

A three-players game

27
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The Object
What is the architecture of the software,

how can it be modified to be more amenable to verification,

will these modifications cost too much



Text

Several architecture choices influence what we can do:

 Activation function ? Can we use ReLU ?

 Connectivity ? Fewer connections lead to more scalable verification.

 Number of parameters ? Can we prune the network ?

 The objective function ? Can we modify it so that it does not only learn the goal of the NN 

but also “some” information to guide the provers’ heuristics ?

 How was it trained ?

The object
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The Property
What to verify,

how to formally specify it,

how is it decomposed in smaller bits
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 Semantics (directly related to the 
domain) can be described through 
math and logic

 The input is a distance, a 
speed, a physical property 
(e.g., an observable), a tabular 
data, (e.g., an age), etc.

 Can be proved on all possible 
inputs

Formally specifiable (structured data)
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 Semantics (directly related to the 
domain) can be described through 
math and logic

 The input is a distance, a 
speed, a physical property 
(e.g., an observable), a tabular 
data, (e.g., an age), etc.

 Can be proved on all possible 
inputs

Formally specifiable (structured data)

 Semantics is an emerging property (cf
a molecule of water isn’t wet). e.g. this 
is a cat. The input is a collection of 
semanticless values (a pixel) that, 
together, can form a meaning 

 Only abstracted properties can be 
described through math and logic (e.g. 
“distance” between two images)

 Cannot realistically be proved on all 
possible inputs

Not directly specifiable (unstructured data)
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Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks (2017, Katz, Barrett, Dill, Julian, Kochenderfer)

Huge look-up tables replaced with NNs to save space. 
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Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks (2017, Katz, Barrett, Dill, Julian, Kochenderfer)

Huge look-up tables replaced with NNs to save space. 
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Huge look-up tables replaced with NNs to save space. 
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Huge look-up tables replaced with NNs to save space. 
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Images, sounds…

How can you formally specify the desirable property “if pedestrian on the road, then brake”?

But you can have different properties : considering notions such as “input space” and “points that are close to 
each other”, a property could be “if two inputs are closer than some measure d, they should be classified the 
same”.
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Local robustness or stability

DistributionIdeally the selected data to build 
and validate the model is 
representative of the intended 
distribution.
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Local robustness or stability

Ideally the selected data to build 
and validate the model is 
representative of the intended 
distribution.

What we want to avoid is a model 
that only knows what it was 
shown

Distribution
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Local robustness or stability

DistributionIdeally the selected data to build 
and validate the model is 
representative of the intended 
distribution.

What we want to avoid is a model 
that only knows what it was 
shown

How does it behave with the 
neighborhood of selected data?

ε

ε

ε

ε

ε

ε

ε
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Local robustness or stability

DistributionIdeally the selected data to build 
and validate the model is 
representative of the intended 
distribution.

What we want to avoid is a model 
that only knows what it was 
shown

How does it behave with the 
neighborhood of selected data?

What is it good for?

Can detect this…

ε

ε

ε

ε

ε

ε

ε
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Local robustness or stability

DistributionIdeally the selected data to build 
and validate the model is 
representative of the intended 
distribution.

What we want to avoid is a model 
that only knows what it was 
shown

How does it behave with the 
neighborhood of selected data?

What is it good for?

… But doesn’t imply this

ε

ε

ε

ε

ε

ε

ε
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Local robustness or stability

Can also generate other data from 
acceptable transformations 

Distribution

flip

blur

darken
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Local robustness or stability

Can also generate other data from 
acceptable transformations 

To see if the network can handle a 
wider distribution.

And we can combine methods

Distribution

flip

blur

darken

ε

ε

ε

ε

ε

ε

ε

ε

ε ε

ε

ε
ε

ε
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Side note: which phase do we use them ?

Post-conception

Train Validate

Transformed 
data 

Intervals 
around data 
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Side note: which phase do we use them ?

Post-conception

Train Validate

Transformed 
data 

Intervals 
around data 

At conception

Train Validate

Transformed 
data 

Intervals 
around data 
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Rapid intro to FM

Examples for this talk: 

• Property-based testing

• Abstract interpretation

• SMT Solving
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Ideal setting for testing: 

• Collection of inputs

• Corresponding collection of outputs

Metamorphic testing is used when:

• You don’t know the actual answer (no oracle)

• But you know what properties should be satisfied by the 

inputs/outputs
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Let 

L (V,V) → int

be the length of the shortest path 

between two vertices, then :

L(a,b) = L(b,a) 

For any two points a, b in a graph.

Input symmetry

⬍
output equality

Ideal setting for testing: 

• Collection of inputs

• Corresponding collection of outputs

Metamorphic testing is used when:

• You don’t know the actual answer (no oracle)

• But you know what properties should be satisfied by the 

inputs/outputs
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Let 

L (list of V) → int

be the length of the shortest path that 

goes through a collection of vertices, 

then :

L(c) ≥ L(c’) 

For any two collections of vertices such 

that c’ ⊆ c.

Input subset

⬍
output inequality

Ideal setting for testing: 

• Collection of inputs

• Corresponding collection of outputs

Metamorphic testing is used when:

• You don’t know the actual answer (no oracle)

• But you know what properties should be satisfied by the 

inputs/outputs
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AIMOS (Artificial Intelligence Metamorphic Observing Software) is a tool to assess the stability of AI 

systems using metamorphic testing.

■ No need to label data for testing.

■ Automates the entire process of applying metamorphic properties on the inputs and outputs of models, 

comparing them and compiling the results into a stability score.

■ Model agnostic (Neural Networks, Support Vector Machines, etc.).

caisar-platform.com
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Right  Left
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caisar-platform.com

■ Written in Python

■ Model agnostic: only the inference functions are needed.

■ Built-in support for various frameworks, input formats and model types.

■ Built-in classical transformations (rotation, noise, symmetry, etc.).
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■ With a configuration file

caisar-platform.com
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■ With a configuration file

■ As a Python library

caisar-platform.com
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■ With a configuration file

■ As a Python library

■ With a Graphical User 

Interface

caisar-platform.com
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Metamorphic testing applied to AI : AIMOS

Easy to use
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caisar-platform.com
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Any operation can be replaced with a custom made Python function (loading the model, the inputs, new 

metrics, etc.).

caisar-platform.com
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AIMOS is a tool that can be integrated in the verification and validation process of AI-based components.

■ Freely available for teaching and research purposes.

■ Integrated in CAISAR, an open-source platform for characterizing safety in AI systems.

caisar-platform.com
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The use-case

• Welding conveyor belt

• AI analysis for detection of faulty welds

• Notification of human expert
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The use-case

• Welding conveyor belt

• AI analysis for detection of faulty welds

• Notification of human expert

Lemesle, A., Varasse, A., Chihani, Z., Tachet, D. (2023). AIMOS: Metamorphic

Testing of AI - An Industrial Application. In: Guiochet, J., Tonetta, S., Schoitsch, E., 

Roy, M., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2023 

Workshops. SAFECOMP 2023. Lecture Notes in Computer Science, vol 14182. 

Springer, Cham. https://doi.org/10.1007/978-3-031-40953-0_27

■ 3 different production lines called C10, C20 and C34 and 

their corresponding weld.

■ 5 AutoML models and 1 internal R&D composit model 

(NN+SVM) per production line.

https://doi.org/10.1007/978-3-031-40953-0_27
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The use-case

• Welding conveyor belt

• AI analysis for detection of faulty welds

• Notification of human expert

The environment => ODD => properties

• Day light changes + human workers pass by light sources => Robustness to varying brigthness

• Vibrating environment => Robustness to blurring

Lemesle, A., Varasse, A., Chihani, Z., Tachet, D. (2023). AIMOS: Metamorphic

Testing of AI - An Industrial Application. In: Guiochet, J., Tonetta, S., Schoitsch, E., 

Roy, M., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2023 

Workshops. SAFECOMP 2023. Lecture Notes in Computer Science, vol 14182. 

Springer, Cham. https://doi.org/10.1007/978-3-031-40953-0_27

■ 3 different production lines called C10, C20 and C34 and 

their corresponding weld.

■ 5 AutoML models and 1 internal R&D composit model 

(NN+SVM) per production line.

https://doi.org/10.1007/978-3-031-40953-0_27
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Representative

dataset

AI Models

Metamorphic properties
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Rapid intro to FM

Examples for this talk: 

• Property-based testing

• Abstract interpretation

• SMT Solving
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We would like to verify a property on the all possible values of inputs x ∈ [a,b] and y ∈ [c,d] in 

some program. 

e.g.: 

x + y ∈ [a+c, b+d]

Do the same for all operations in the program. 

Use other types of domain for more precision (not just intervals).
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f (int y){

int x;

x = 3 * (y²+1);

if x > 100 then

x = x + 10;

else

x = x - 2;

return x;

}

..................

..........

.........

..........

...................

...........

..............

Property: “f(y)=100 → Critical vibration frequency ”
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f (int y){

int x;

x = 3 * (y²+1);

if x > 100 then

x = x + 10;

else

x = x - 2;

return x;

}

..................

..........

.........

..........

...................

...........

..............

Property: “f(y)=100 → Critical vibration frequency ”

..-2,-1,0,1,2,..

3,6,9,..

102,105,108,..

112,115,118,..

3,6,9..93,96,99

1,4,7,..91,94,97

1,4,..94,97,112,115..

Concret
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f (int y){

int x;

x = 3 * (y²+1);

if x > 100 then

x = x + 10;

else

x = x - 2;

return x;

}

..................

..........

.........

..........

...................

...........

..............

Property: “f(y)=100 → Critical vibration frequency ”

..-2,-1,0,1,2,..

3,6,9,..

102,105,108,..

112,115,118,..

3,6,9..93,96,99

1,4,7,..91,94,97

1,4,..94,97,112,115..

Concret

-∞,+∞

3,+∞

102,+∞

112,+∞

3,99

1,97

1,+∞

Intervals
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f (int y){

int x;

x = 3 * (y²+1);

if x > 100 then

x = x + 10;

else

x = x - 2;

return x;

}

..................

..........

.........

..........

...................

...........

..............

Property: “f(y)=100 → Critical vibration frequency ”

..-2,-1,0,1,2,..

3,6,9,..

102,105,108,..

112,115,118,..

3,6,9..93,96,99
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-∞,+∞

3,+∞

102,+∞

112,+∞

3,99
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1,+∞

Intervals modulo
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0%3

1%3

0%3

1%3

1%3
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f (int y){

int x;

x = 3 * (y²+1);

if x > 100 then

x = x + 10;

else

x = x - 2;

return x;

}

..................

..........

.........

..........

...................

...........

..............

..-2,-1,0,1,2,..

3,6,9,..

102,105,108,..

112,115,118,..

3,6,9..93,96,99

1,4,7,..91,94,97

1,4,..94,97,112,115..

-∞,+∞

3,+∞

102,+∞

112,+∞

3,99

1,97

1,+∞

Concret Intervals modulo

0%1

0%3

0%3

1%3

0%3

1%3

1%3

Conservative over-approximation: the concretization of the abstract domains contains reality

The inverse is not necessarily true. 1,4..94,97,100,103,106,109,112,115..

-∞,+∞

3,+∞

102,+∞

112,+∞

3,99

1,97

[1,97]∪
[112,+∞[

Union of 

intervals

Property: “f(y)=100 → Critical vibration frequency ”
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Desired

space

Concrete

executions

Input space

Verified property

Inconclusive

Falsified property

Over approximation

of reachable states 

at 1st layer

Propagation

Over approximation

of reachable states 

at 2nd layer

Over approximation

of final reachable

states
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[-2,2] + [-2,2] = [-4,4]  

- [-2,2] - [-2,2] =[-4,4]
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[-4,4] ....................

]0,4] ........

]0,4] ....................

[-4,0] ....................

[0,0] ....................

[0,4] 

if        > 0 then

else
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PyRAT: Python Reachability Assessment Tool

Application to NN
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[-2,2] + [-2,2] = [-4,4]  

- [-2,2] - [-2,2] =[-4,4]

[0,4]  

[0,4]

[-8,0]
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PyRAT: Python Reachability Assessment Tool
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• 2nd at VNNComp 2024

• Written in Python with PyTorch and Numpy backend

• Supports common layers and architecture in ONNX, Keras/Tensorflow and PyTorch

• Different abstract domains implemented: Box, Zonotopes, Constrained Zonotopes, ...

• Integrated in CAISAR, an open-source platform for characterizing safety in AI systems.

caisar-platform.com
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PyRAT: Python Reachability Assessment Tool

Use-case: Mooring lines failure detection
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Mooring incidents (DeepStar® data from 1997-2012): 

 107 incidents from 73 facilities across the industry

 Potentially dire consequences

 Many FPSO have no means of monitoring lines 

 Those who do face technical problems (robustness of equipment)

94

PyRAT: Python Reachability Assessment Tool

Use-case: Mooring lines failure detection
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Patented dry monitoring detection systems, based on vessel positions and low-
frequency periods (which can be obtained from Dual GPS)

95

PyRAT: Python Reachability Assessment Tool

Use-case: Mooring lines failure detection
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 Highly non-linear problem (machine learning 
to recognize and classify patterns)

 Ability to deal with some degrees of variations 
from various system components (such as 
mooring line stiffness) and with error or noise 
from monitoring system

 Cover a complete range of vessel drafts, 
expected vessel responses from environment 
conditions and directions and mooring line 
conditions

The model

 Input: Vessel movement, mass, offset, …

 Output: group-line failures

96

PyRAT: Python Reachability Assessment Tool

Use-case: Mooring lines failure detection
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PyRAT: Python Reachability Assessment Tool

Use-case: Mooring lines failure detection

Ensuring robustness properties
 Stability of classification in presence of 

perturbation
 Perturbation per input (sensor sensitivity)
 Different perturbations for different inputs

(Also verified functional properties but NDA)
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Rapid intro to FM

Examples for this talk: 

• Property-based testing

• Abstract interpretation

• SMT Solving



Disposition : Titre et contenu

Satisfiability Modulo Theory

99

caisar

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT 

problem is a conjunction of clauses. This is called Conjunctive Normal Form. 

a
b

c

c’ b’

a’

_+…+_



Disposition : Titre et contenu

Satisfiability Modulo Theory

100

caisar

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT 

problem is a conjunction of clauses. This is called Conjunctive Normal Form. 

Any logical formula can be converted 

into Conjunctive Normal Form
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A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT 

problem is a conjunction of clauses. This is called Conjunctive Normal Form. 

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such 

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.
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a’+b

b’+c

c+e

c’+a’

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT 

problem is a conjunction of clauses. This is called Conjunctive Normal Form. 

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such 

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

Decide a
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a’+b

b’+c

c+e

c’+a’

Implies... 

• b is true

• c is false

Decide a

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT 

problem is a conjunction of clauses. This is called Conjunctive Normal Form. 

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such 

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.
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A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT 

problem is a conjunction of clauses. This is called Conjunctive Normal Form. 

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such 

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a’+b

b’+c

c+e

c’+a’

Implies... 

• b is true

• c is true 

• c is false

Decide a
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A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT 

problem is a conjunction of clauses. This is called Conjunctive Normal Form. 

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such 

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a’+b

b’+c

c+e

c’+a’

=> Contradiction.

Decide a
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A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT 

problem is a conjunction of clauses. This is called Conjunctive Normal Form. 

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such 

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a’+b

b’+c

c+e

c’+a’

=> Contradiction.

Decide a

Backtrack
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A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT 

problem is a conjunction of clauses. This is called Conjunctive Normal Form. 

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such 

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a’+b

b’+c

c+e

c’+a’

Now we know :

a must be false
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A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT 

problem is a conjunction of clauses. This is called Conjunctive Normal Form. 

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such 

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a’+b

b’+c

c+e

c’+a’

Now we know :

a must be false
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A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT 

problem is a conjunction of clauses. This is called Conjunctive Normal Form. 

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such 

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a’+b

b’+c

c+e

c’+a’

Decide b



Disposition : Titre et contenu

Satisfiability Modulo Theory

113

caisar

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT 

problem is a conjunction of clauses. This is called Conjunctive Normal Form. 

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such 

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a’+b

b’+c

c+e

c’+a’

Decide b

Implies 

• c is true
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A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT 

problem is a conjunction of clauses. This is called Conjunctive Normal Form. 

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such 

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a’+b

b’+c

c+e

c’+a’

Decide b

Implies 

• c is true

Then e can have any value
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A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT 

problem is a conjunction of clauses. This is called Conjunctive Normal Form. 

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such 

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a’+b

b’+c

c+e

c’+a’

So now the assignments are 

• False: a, True: b, c, e

• False: a, e, True: b, c
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Control flow-guided smt solving for program verification (2018, Chen, Jianhui, and Fei He)
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Control flow-guided smt solving for program verification (2018, Chen, Jianhui, and Fei He)

????
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Images from Leonardo de Moura
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Back to Neural networks!
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We know how to encode an ite already: 

y = If (x < 0) then 0 else x

Becomes

(x < 0) => (y = 0)

(x >= 0) => (y = x)

Which becomes

Not (x<0) or y = 0

Not (x>=0) or y = x

We now that the relu is just a max, which is just an ite. 

So let’s speak simpler
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Piecewise Linear Neural Network verification: A comparative study (2017, Bunel, Turkaslan, Torr, Kohli)
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Piecewise Linear Neural Network verification: A comparative study (2017, Bunel, Turkaslan, Torr, Kohli)
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(declare-fun x1 () Int)

(declare-fun x2 () Int)

(declare-fun ain () Int)

(declare-fun aout () Int)

(declare-fun bin () Int)

(declare-fun bout () Int)

(declare-fun y () Int)
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(declare-fun x1 () Int)

(declare-fun x2 () Int)

(declare-fun ain () Int)

(declare-fun aout () Int)

(declare-fun bin () Int)

(declare-fun bout () Int)

(declare-fun y () Int)

(define-fun relu ((res Int )) Int (ite (> res 0 ) res 0 ))
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(declare-fun x1 () Int)

(declare-fun x2 () Int)

(declare-fun ain () Int)

(declare-fun aout () Int)

(declare-fun bin () Int)

(declare-fun bout () Int)

(declare-fun y () Int)

(define-fun relu ((res Int )) Int (ite (> res 0 ) res 0 ))

(assert (<= (- 2) x1))

(assert (<= (- 2) x2))

(assert (<= x1 2))

(assert (<= x2 2))
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(declare-fun x1 () Int)

(declare-fun x2 () Int)

(declare-fun ain () Int)

(declare-fun aout () Int)

(declare-fun bin () Int)

(declare-fun bout () Int)

(declare-fun y () Int)

(define-fun relu ((res Int )) Int (ite (> res 0 ) res 0 ))

(assert (<= (- 2) x1))

(assert (<= (- 2) x2))

(assert (<= x1 2))

(assert (<= x2 2))

(assert (= ain (+ x1 x2)))

(assert (= bin (- x1 (- x2))))
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(declare-fun x1 () Int)

(declare-fun x2 () Int)

(declare-fun ain () Int)

(declare-fun aout () Int)

(declare-fun bin () Int)

(declare-fun bout () Int)

(declare-fun y () Int)

(define-fun relu ((res Int )) Int (ite (> res 0 ) res 0 ))

(assert (<= (- 2) x1))

(assert (<= (- 2) x2))

(assert (<= x1 2))

(assert (<= x2 2))

(assert (= ain (+ x1 x2)))

(assert (= bin (- x1 (- x2))))

(assert (= aout (reluR ain)))

(assert (= bout (reluR bin)))
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(declare-fun x1 () Int)

(declare-fun x2 () Int)

(declare-fun ain () Int)

(declare-fun aout () Int)

(declare-fun bin () Int)

(declare-fun bout () Int)

(declare-fun y () Int)

(define-fun relu ((res Int )) Int (ite (> res 0 ) res 0 ))

(assert (<= (- 2) x1))

(assert (<= (- 2) x2))

(assert (<= x1 2))

(assert (<= x2 2))

(assert (= ain (+ x1 x2)))

(assert (= bin (- x1 (- x2))))

(assert (= aout (reluR ain)))

(assert (= bout (reluR bin)))

(assert (= y (- aout (- bout))))
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(declare-fun x1 () Int)

(declare-fun x2 () Int)

(declare-fun ain () Int)

(declare-fun aout () Int)

(declare-fun bin () Int)

(declare-fun bout () Int)

(declare-fun y () Int)

(define-fun relu ((res Int )) Int (ite (> res 0 ) res 0 ))

(assert (<= (- 2) x1))

(assert (<= (- 2) x2))

(assert (<= x1 2))

(assert (<= x2 2))

(assert (= ain (+ x1 x2)))

(assert (= bin (- x1 (- x2))))

(assert (= aout (reluR ain)))

(assert (= bout (reluR bin)))

(assert (= y (- aout (- bout))))

(assert (<= y -5))
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(declare-fun x1 () Int)

(declare-fun x2 () Int)

(declare-fun ain () Int)

(declare-fun aout () Int)

(declare-fun bin () Int)

(declare-fun bout () Int)

(declare-fun y () Int)

(define-fun relu ((res Int )) Int (ite (> res 0 ) res 0 ))

(assert (<= (- 2) x1))

(assert (<= (- 2) x2))

(assert (<= x1 2))

(assert (<= x2 2))

(assert (= ain (+ x1 x2)))

(assert (= bin (- x1 (- x2))))

(assert (= aout (reluR ain)))

(assert (= bout (reluR bin)))

(assert (= y (- aout (- bout))))

(assert (<= y -5))

(check-sat)
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Tedious isn’t it...



Text

Characterizing Artificial Intelligence Safety and Reliability

A federative platform for analysis of artificial intelligence system components
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Principle: Maximize coverage of AI models and properties

• Common expressive specification language

• Easy extensibility through clear interfaces

• Heuristic-aided V&V analysis

• Common aggregation of analysis outputs

Target: SVM, Neural Networks, XGBoost models, ensemble models,…

Application: depending on the used plug-ins. Currently includes

• SAVer for SVM

• Colibri for XGboost

• PyRAT, AB-Crown, Nnenum, Marabou for NN

Background: The federative platform strategy for V&V has been successful for critical SW  (see, for example, Frama-C and Why3)
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What CAISAR is
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What CAISAR is

Characterizing AI Safety And Robustness
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What CAISAR is

Characterizing AI Safety And Robustness
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What CAISAR is (going to be)

Characterizing AI Safety And Robustness

caisar-platform.com



Disposition : Titre et contenu

Our lab

Verification Test Platform Symbolic XAI & uncertainty

PARTICULPyRAT CAISARAIMOS Colibri & co

146caisar-platform.com

Verification of safety

and robustness

formal specifications

through Abstract 

Interpretation

Metamorphic testing

applied to AI

(Available for 

teaching)

Open-source, 

modular, extensible

platform to 

Characterize AI Safety

And Robustness

Open-source

Symbolic AI tools, 

Safe-by-design

Constraint solvers

Case-based

reasoning, 

explainability, out-of-

distribution detection
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Symbolic AI: Colibri’s

Colibri.frama-c.com

Principle: Safe-by-design Symbolic AI through a constraint solving 

library

• Separately prove, in Why3, the necessary bricks for constraint 

solving: Floating-point numbers, integers, bit-vectors, strings, etc. 

• Allow for selection of these bricks to tailor the construction of a 

solver to the needs of the user

• Automatically extract a C implementation of the solver

Target: XGBoost models, embedded software

Application: Energy sector (e.g., IRSN), space (e.g., NASA). Can 

also be used as a verification tool (winner of SMT-Competition since 

2017), which makes it an essential brick of other tools such as 

Frama-C and GATeL.

Background: Constraint solving is used in several critical software 

domains
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Cool, but where do I start ?



Disposition : Titre et contenu

• You’re a student, a researcher, or a professional who want to evaluate solutions…

• You want automatic test generation with AIMOS or verification with PyRAT: free licence available

• You want a more general way of testing and verification: CAISAR is open-source

• You want to play around with XAI methods : CaBRNet is open-source

• You’re a teacher and want to use tools in lab sessions for your students

• Same as above but there are also course material available that we can help you adapt

• You’re a professional who wants to use tools in a production setting

• Open-source platforms and their documentations are available, support licenses are possible

• License is possible for closed-source tools PyRAT and AIMOS

• When in doubt: contact us ! Zakaria.chihani@cea.fr
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Who are you? What do you want?
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Not the complete picture…

Software Machine

“Traditional” human-written software

Machine generated models

… low level……

General purpose provers and platforms (Why3, Alt-Ergo, Z3, Colibri, TLA+, K-framework,…) 

Krakatoa,

OpenJML
(java programs)

Frama-C,

Astrée 

Polyspace
(C/C++ programs)GATeL

(Lustre programs)

BINSEC

Unisim

SPARK
(Ada programs)

||

Miasm

CompCert
(Compilation of C)

B-Method

SCADE

Papyrus
BAP

seL4
(proven

microkernel)

aiT WCET analyzers

CoVaC
(Compiler validation)

PyRATEran

ReluVal
CNN-Cert Planet

MIPVerify
Sherlock

Neurify

High level (model… source code…)

SAVer

Not NN


