
Disposition : Titre image

Formal Verification Of Symbolic
And Connectionist AI: A Way
Toward Higher Quality Software
Julien Girard-Satabin, Dorin Doncenco,
Zakaria Chihani

zakaria.chihani@cea.fr

Ce travail a bénéficié d'une aide de l’État gérée par l'Agence Nationale de la Recherche

au titre de France 2030 portant la référence « ANR-23-PEIA-0006 »

mailto:zakaria.chihani@cea.fr

Disposition : Titre seul

2

So what are Formal Methods

 Non snobbish definition

 Math- and logic-based techniques with rigorously established theoretical

foundations

 Used for the specification, development, test and verification of software and

hardware

 Why use formal methods ?

 Non validated software can have dire consequences and mathematical

analysis can contribute to the reliability and robustness

 Some certification standards call for (e.g., DO-178C for avionics) or even

mandate (e.g., ISO/IEC 15408) the use of formal methods

Disposition : Titre et contenu

Our lab

3

 Formal methods for safety and security of software for decades

 Branched into AI trustworthiness in 2017

 About 10 permanent researchers, plus post docs, engineers, PhDs and interns

 Developing tools and methods

Verification Test Platform Symbolic XAI & uncertainty

Academia

Industry

caisar-platform.com

Disposition : Titre et contenu

This session

4

 No particular background needed

 At the end the hope is you

 Know some basic principles of some formal methods

 Can imagine for what they can be used

 Want to know more of the technical stuff

Verification Test Platform Symbolic XAI & uncertainty

Academia

Industry

caisar-platform.com

Disposition : Citation Gris

Astuce :Pour fermer les guillemets de fin de citation ajoutez 2 apostrophes à la fin de votre texte (touche [4] du clavier)

5

Rapid intro to FM

Examples for this talk:

• Property-based testing

• Abstract interpretation

• SMT Solving

Disposition : Vide

So why Formal Methods

6

Disposition : Vide

So why Formal Methods

7

The Ariane 5 reused the inertial reference platform from

the Ariane 4, but the Ariane 5's flight path differed

considerably from the previous models.

The greater horizontal acceleration caused a data

conversion from a 64-bit floating point number to a 16-bit

signed integer value to overflow and cause a hardware

exception.

The subsequent automated analysis of the Ariane code

(written in Ada) was the first example of large-scale static

code analysis by abstract interpretation.

Disposition : Vide

So why Formal Methods

8

The Ariane 5 reused the inertial reference platform from

the Ariane 4, but the Ariane 5's flight path differed

considerably from the previous models.

The greater horizontal acceleration caused a data

conversion from a 64-bit floating point number to a 16-bit

signed integer value to overflow and cause a hardware

exception.

The subsequent automated analysis of the Ariane code

(written in Ada) was the first example of large-scale static

code analysis by abstract interpretation.

If you don’t use formal methods, your failure will be in

every presentation of every FM conference.

Disposition : Vide

So HOW Formal Methods (usually)

9

Disposition : Vide

So WHO Formal Methods

10

Disposition : Vide

So for WHOM Formal Methods

11

Disposition : Vide

So WHICH Formal Methods

12

Disposition : Vide

So WHICH Formal Method for AI

13

Disposition : Vide

A brief history of wrong predictions

14

Disposition : Vide

A brief history of wrong predictions

15

Disposition : Vide

Shifting the social process

Good old fashioned math

and logic, whiteboard and

paper:

Proof is the focus of the

social process

• Sharing

• Checking

• Collaborating

• Reusing

• Inspiring

Proof

16

Disposition : Vide

Shifting the social process

Good old fashioned math

and logic, whiteboard and

paper:

Proof is the focus of the

social process

• Sharing

• Checking

• Collaborating

• Reusing

• Inspiring

Formal methods:

Prover is the focus

Proof

Prover

PyRAT
AB-Crown

17

Disposition : Vide

Shifting the social process

Good old fashioned math

and logic, whiteboard and

paper:

Proof is the focus of the

social process

• Sharing

• Checking

• Collaborating

• Reusing

• Inspiring

Formal methods:

Prover is the focus

Proof

Prover

PyRAT
AB-Crown

18

Disposition : Vide

Shifting the social process

Good old fashioned math

and logic, whiteboard and

paper:

Proof is the focus of the

social process

• Sharing

• Checking

• Collaborating

• Reusing

• Inspiring

Formal methods:

Prover is the focus

Proof

Prover

PyRAT
AB-Crown

Proof that my C code

never fails with a division

by zero

19

Disposition : Vide

Shifting the social process

Good old fashioned math

and logic, whiteboard and

paper:

Proof is the focus of the

social process

• Sharing

• Checking

• Collaborating

• Reusing

• Inspiring

Formal methods:

Prover is the focus

Proof

Prover

PyRAT
AB-Crown

Proof that my C code

never fails with a division

by zero

20

Disposition : Vide

Shifting the social process

Good old fashioned math

and logic, whiteboard and

paper:

Proof is the focus of the

social process

• Sharing

• Checking

• Collaborating

• Reusing

• Inspiring

Formal methods:

Prover is the focus

With some focus on

proofs

Proof

Proof

Prover

PyRAT
AB-Crown

Proof that my C code

never fails with a division

by zero

21

Disposition : Vide

Valid scepticism

22

Disposition : Vide

Restarting Formal Methods for AI

23

Disposition : Vide

Restarting Formal Methods for AI

24

Disposition : Vide

Restarting Formal Methods for AI

25

Disposition : Vide

Characterization of (AI) trustworthiness
A three-players game

General picture

26

Disposition : Vide

Properties to verify

Methods and tools

Object to certify

D
e

v
e

lo
p

e
r’
s
 s

id
e

V
a

lid
a

to
r’
s
 s

id
e

• What is the architecture of the software, how can it be

modified to be more amenable to verification, will these

modifications cost too much ?

(Activation functions of NN, kernel function of SVM,

etc.)

• What to verify, how to formally specify it, how is it

decomposed in smaller bits?

(Robustness, metamorphism, behavior specification,

etc.)

• How to verify, what methods fit my problem, can the tools

be helped with heuristics?

(Abstract interpretation, SMT solving, symbolic

execution, Constraint programming, etc.)

A three-players game

27

Disposition : Vide

The Object
What is the architecture of the software,

how can it be modified to be more amenable to verification,

will these modifications cost too much

Text

Several architecture choices influence what we can do:

 Activation function ? Can we use ReLU ?

 Connectivity ? Fewer connections lead to more scalable verification.

 Number of parameters ? Can we prune the network ?

 The objective function ? Can we modify it so that it does not only learn the goal of the NN

but also “some” information to guide the provers’ heuristics ?

 How was it trained ?

The object

Disposition : Vide

The Property
What to verify,

how to formally specify it,

how is it decomposed in smaller bits

30

Disposition : Vide

Types of properties depend on the structure

31

 Semantics (directly related to the
domain) can be described through
math and logic

 The input is a distance, a
speed, a physical property
(e.g., an observable), a tabular
data, (e.g., an age), etc.

 Can be proved on all possible
inputs

Formally specifiable (structured data)

Disposition : Vide

Types of properties depend on the structure

32

 Semantics (directly related to the
domain) can be described through
math and logic

 The input is a distance, a
speed, a physical property
(e.g., an observable), a tabular
data, (e.g., an age), etc.

 Can be proved on all possible
inputs

Formally specifiable (structured data)

 Semantics is an emerging property (cf
a molecule of water isn’t wet). e.g. this
is a cat. The input is a collection of
semanticless values (a pixel) that,
together, can form a meaning

 Only abstracted properties can be
described through math and logic (e.g.
“distance” between two images)

 Cannot realistically be proved on all
possible inputs

Not directly specifiable (unstructured data)

Disposition : Vide

Structured data

33
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks (2017, Katz, Barrett, Dill, Julian, Kochenderfer)

Huge look-up tables replaced with NNs to save space.

Disposition : Vide

Structured data

34
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks (2017, Katz, Barrett, Dill, Julian, Kochenderfer)

Huge look-up tables replaced with NNs to save space.

Disposition : Vide

Structured data

35

Huge look-up tables replaced with NNs to save space.

Disposition : Vide

Structured data

36

Huge look-up tables replaced with NNs to save space.

Disposition : Vide

Unstructured data

37

Images, sounds…

How can you formally specify the desirable property “if pedestrian on the road, then brake”?

But you can have different properties : considering notions such as “input space” and “points that are close to
each other”, a property could be “if two inputs are closer than some measure d, they should be classified the
same”.

Disposition : Titre et contenu

38

Local robustness or stability

DistributionIdeally the selected data to build
and validate the model is
representative of the intended
distribution.

Disposition : Titre et contenu

39

Local robustness or stability

DistributionIdeally the selected data to build
and validate the model is
representative of the intended
distribution.

Disposition : Titre et contenu

40

Local robustness or stability

Ideally the selected data to build
and validate the model is
representative of the intended
distribution.

What we want to avoid is a model
that only knows what it was
shown

Distribution

Disposition : Titre et contenu

41

Local robustness or stability

DistributionIdeally the selected data to build
and validate the model is
representative of the intended
distribution.

What we want to avoid is a model
that only knows what it was
shown

How does it behave with the
neighborhood of selected data?

ε

ε

ε

ε

ε

ε

ε

Disposition : Titre et contenu

42

Local robustness or stability

DistributionIdeally the selected data to build
and validate the model is
representative of the intended
distribution.

What we want to avoid is a model
that only knows what it was
shown

How does it behave with the
neighborhood of selected data?

What is it good for?

Can detect this…

ε

ε

ε

ε

ε

ε

ε

Disposition : Titre et contenu

43

Local robustness or stability

DistributionIdeally the selected data to build
and validate the model is
representative of the intended
distribution.

What we want to avoid is a model
that only knows what it was
shown

How does it behave with the
neighborhood of selected data?

What is it good for?

… But doesn’t imply this

ε

ε

ε

ε

ε

ε

ε

Disposition : Titre et contenu

44

Local robustness or stability

Can also generate other data from
acceptable transformations

Distribution

flip

blur

darken

Disposition : Titre et contenu

45

Local robustness or stability

Can also generate other data from
acceptable transformations

To see if the network can handle a
wider distribution.

And we can combine methods

Distribution

flip

blur

darken

ε

ε

ε

ε

ε

ε

ε

ε

ε ε

ε

ε
ε

ε

Disposition : Titre et contenu

46

Side note: which phase do we use them ?

Post-conception

Train Validate

Transformed
data

Intervals
around data

Disposition : Titre et contenu

47

Side note: which phase do we use them ?

Post-conception

Train Validate

Transformed
data

Intervals
around data

At conception

Train Validate

Transformed
data

Intervals
around data

Disposition : Citation Gris

Astuce :Pour fermer les guillemets de fin de citation ajoutez 2 apostrophes à la fin de votre texte (touche [4] du clavier)

48

Rapid intro to FM

Examples for this talk:

• Property-based testing

• Abstract interpretation

• SMT Solving

Disposition : Titre et contenu

Metamorphic testing

49

Ideal setting for testing:

• Collection of inputs

• Corresponding collection of outputs

Metamorphic testing is used when:

• You don’t know the actual answer (no oracle)

• But you know what properties should be satisfied by the

inputs/outputs

Disposition : Titre et contenu

Metamorphic testing

50

Let

L (V,V) → int

be the length of the shortest path

between two vertices, then :

L(a,b) = L(b,a)

For any two points a, b in a graph.

Input symmetry

⬍
output equality

Ideal setting for testing:

• Collection of inputs

• Corresponding collection of outputs

Metamorphic testing is used when:

• You don’t know the actual answer (no oracle)

• But you know what properties should be satisfied by the

inputs/outputs

Disposition : Titre et contenu

Metamorphic testing

51

Let

L (list of V) → int

be the length of the shortest path that

goes through a collection of vertices,

then :

L(c) ≥ L(c’)

For any two collections of vertices such

that c’ ⊆ c.

Input subset

⬍
output inequality

Ideal setting for testing:

• Collection of inputs

• Corresponding collection of outputs

Metamorphic testing is used when:

• You don’t know the actual answer (no oracle)

• But you know what properties should be satisfied by the

inputs/outputs

Disposition : Titre et contenu

Metamorphic testing applied to AI : AIMOS

52

AIMOS (Artificial Intelligence Metamorphic Observing Software) is a tool to assess the stability of AI

systems using metamorphic testing.

■ No need to label data for testing.

■ Automates the entire process of applying metamorphic properties on the inputs and outputs of models,

comparing them and compiling the results into a stability score.

■ Model agnostic (Neural Networks, Support Vector Machines, etc.).

caisar-platform.com

Disposition : Titre et contenu

Metamorphic testing applied to AI : AIMOS

53
caisar-platform.com

Disposition : Titre et contenu

Metamorphic testing applied to AI : AIMOS

54
caisar-platform.com

Disposition : Titre et contenu

Metamorphic testing applied to AI : AIMOS

55
caisar-platform.com

Disposition : Titre et contenu

Metamorphic testing applied to AI : AIMOS

56

Right Left

Disposition : Titre et contenu

Metamorphic testing applied to AI : AIMOS

Easy to use

57
caisar-platform.com

■ Written in Python

■ Model agnostic: only the inference functions are needed.

■ Built-in support for various frameworks, input formats and model types.

■ Built-in classical transformations (rotation, noise, symmetry, etc.).

Disposition : Titre et contenu

Metamorphic testing applied to AI : AIMOS

Easy to use

58

■ With a configuration file

caisar-platform.com

Disposition : Titre et contenu

Metamorphic testing applied to AI : AIMOS

Easy to use

59

■ With a configuration file

■ As a Python library

caisar-platform.com

Disposition : Titre et contenu

Metamorphic testing applied to AI : AIMOS

Easy to use

60

■ With a configuration file

■ As a Python library

■ With a Graphical User

Interface

caisar-platform.com

Disposition : Titre et contenu

Metamorphic testing applied to AI : AIMOS

Easy to use

61
caisar-platform.com

Disposition : Titre et contenu

Metamorphic testing applied to AI : AIMOS

Modular and extensible

62

Any operation can be replaced with a custom made Python function (loading the model, the inputs, new

metrics, etc.).

caisar-platform.com

Disposition : Titre et contenu

Metamorphic testing applied to AI : AIMOS

63

AIMOS is a tool that can be integrated in the verification and validation process of AI-based components.

■ Freely available for teaching and research purposes.

■ Integrated in CAISAR, an open-source platform for characterizing safety in AI systems.

caisar-platform.com

Disposition : Titre et contenu

Metamorphic testing applied to AI : AIMOS

64

The use-case

• Welding conveyor belt

• AI analysis for detection of faulty welds

• Notification of human expert

Disposition : Titre et contenu

Metamorphic testing applied to AI : AIMOS

65

The use-case

• Welding conveyor belt

• AI analysis for detection of faulty welds

• Notification of human expert

Disposition : Titre et contenu

Metamorphic testing applied to AI : AIMOS

66

The use-case

• Welding conveyor belt

• AI analysis for detection of faulty welds

• Notification of human expert

Lemesle, A., Varasse, A., Chihani, Z., Tachet, D. (2023). AIMOS: Metamorphic

Testing of AI - An Industrial Application. In: Guiochet, J., Tonetta, S., Schoitsch, E.,

Roy, M., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2023

Workshops. SAFECOMP 2023. Lecture Notes in Computer Science, vol 14182.

Springer, Cham. https://doi.org/10.1007/978-3-031-40953-0_27

■ 3 different production lines called C10, C20 and C34 and

their corresponding weld.

■ 5 AutoML models and 1 internal R&D composit model

(NN+SVM) per production line.

https://doi.org/10.1007/978-3-031-40953-0_27

Disposition : Titre et contenu

Metamorphic testing applied to AI : AIMOS

67

The use-case

• Welding conveyor belt

• AI analysis for detection of faulty welds

• Notification of human expert

The environment => ODD => properties

• Day light changes + human workers pass by light sources => Robustness to varying brigthness

• Vibrating environment => Robustness to blurring

Lemesle, A., Varasse, A., Chihani, Z., Tachet, D. (2023). AIMOS: Metamorphic

Testing of AI - An Industrial Application. In: Guiochet, J., Tonetta, S., Schoitsch, E.,

Roy, M., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2023

Workshops. SAFECOMP 2023. Lecture Notes in Computer Science, vol 14182.

Springer, Cham. https://doi.org/10.1007/978-3-031-40953-0_27

■ 3 different production lines called C10, C20 and C34 and

their corresponding weld.

■ 5 AutoML models and 1 internal R&D composit model

(NN+SVM) per production line.

https://doi.org/10.1007/978-3-031-40953-0_27

Disposition : Titre et contenu

Metamorphic testing applied to AI : AIMOS

68

Representative

dataset

AI Models

Metamorphic properties

Disposition : Titre et contenu

Side note: think about the use-case
and careful with transfer learning

69

Disposition : Citation Gris

Astuce :Pour fermer les guillemets de fin de citation ajoutez 2 apostrophes à la fin de votre texte (touche [4] du clavier)

70

Rapid intro to FM

Examples for this talk:

• Property-based testing

• Abstract interpretation

• SMT Solving

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

Based on Abstract Interpretation

71

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

Based on Abstract Interpretation

72

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

Based on Abstract Interpretation

73

We would like to verify a property on the all possible values of inputs x ∈ [a,b] and y ∈ [c,d] in

some program.

e.g.:

x + y ∈ [a+c, b+d]

Do the same for all operations in the program.

Use other types of domain for more precision (not just intervals).

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

Based on Abstract Interpretation

74

f (int y){

int x;

x = 3 * (y²+1);

if x > 100 then

x = x + 10;

else

x = x - 2;

return x;

}

..................

..........

.........

..........

...................

...........

..............

Property: “f(y)=100 → Critical vibration frequency ”

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

Based on Abstract Interpretation

75

f (int y){

int x;

x = 3 * (y²+1);

if x > 100 then

x = x + 10;

else

x = x - 2;

return x;

}

..................

..........

.........

..........

...................

...........

..............

Property: “f(y)=100 → Critical vibration frequency ”

..-2,-1,0,1,2,..

3,6,9,..

102,105,108,..

112,115,118,..

3,6,9..93,96,99

1,4,7,..91,94,97

1,4,..94,97,112,115..

Concret

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

Based on Abstract Interpretation

76

f (int y){

int x;

x = 3 * (y²+1);

if x > 100 then

x = x + 10;

else

x = x - 2;

return x;

}

..................

..........

.........

..........

...................

...........

..............

Property: “f(y)=100 → Critical vibration frequency ”

..-2,-1,0,1,2,..

3,6,9,..

102,105,108,..

112,115,118,..

3,6,9..93,96,99

1,4,7,..91,94,97

1,4,..94,97,112,115..

Concret

-∞,+∞

3,+∞

102,+∞

112,+∞

3,99

1,97

1,+∞

Intervals

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

Based on Abstract Interpretation

77

f (int y){

int x;

x = 3 * (y²+1);

if x > 100 then

x = x + 10;

else

x = x - 2;

return x;

}

..................

..........

.........

..........

...................

...........

..............

Property: “f(y)=100 → Critical vibration frequency ”

..-2,-1,0,1,2,..

3,6,9,..

102,105,108,..

112,115,118,..

3,6,9..93,96,99

1,4,7,..91,94,97

1,4,..94,97,112,115..

Concret

-∞,+∞

3,+∞

102,+∞

112,+∞

3,99

1,97

1,+∞

Intervals modulo

0%1

0%3

0%3

1%3

0%3

1%3

1%3

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

Based on Abstract Interpretation

78

f (int y){

int x;

x = 3 * (y²+1);

if x > 100 then

x = x + 10;

else

x = x - 2;

return x;

}

..................

..........

.........

..........

...................

...........

..............

..-2,-1,0,1,2,..

3,6,9,..

102,105,108,..

112,115,118,..

3,6,9..93,96,99

1,4,7,..91,94,97

1,4,..94,97,112,115..

-∞,+∞

3,+∞

102,+∞

112,+∞

3,99

1,97

1,+∞

Concret Intervals modulo

0%1

0%3

0%3

1%3

0%3

1%3

1%3

Conservative over-approximation: the concretization of the abstract domains contains reality

The inverse is not necessarily true. 1,4..94,97,100,103,106,109,112,115..

-∞,+∞

3,+∞

102,+∞

112,+∞

3,99

1,97

[1,97]∪
[112,+∞[

Union of

intervals

Property: “f(y)=100 → Critical vibration frequency ”

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

Application to NN

79
Desired

space

Concrete

executions

Input space

Verified property

Inconclusive

Falsified property

Over approximation

of reachable states

at 1st layer

Propagation

Over approximation

of reachable states

at 2nd layer

Over approximation

of final reachable

states

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

Application to NN

80
Desired

space

Concrete

executions

Input space

Verified property

Inconclusive

Falsified property

Over approximation

of reachable states

at 1st layer

Propagation

Over approximation

of reachable states

at 2nd layer

Over approximation

of final reachable

states

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

Application to NN

81
Desired

space

Concrete

executions

Input space

Verified property

Inconclusive

Falsified property

Over approximation

of reachable states

at 1st layer

Propagation

Over approximation

of reachable states

at 2nd layer

Over approximation

of final reachable

states

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

Application to NN

82
Desired

space

Concrete

executions

Input space

Verified property

Inconclusive

Falsified property

Over approximation

of reachable states

at 1st layer

Propagation

Over approximation

of reachable states

at 2nd layer

Over approximation

of final reachable

states

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

Application to NN

83

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

Application to NN

84

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

Application to NN

85

[-2,2] + [-2,2] = [-4,4]

- [-2,2] - [-2,2] =[-4,4]

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

Application to NN

86

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

Application to NN

87

[-4,4]

]0,4]

]0,4]

[-4,0]

[0,0]

[0,4]

if > 0 then

else

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

Application to NN

88

[-2,2] + [-2,2] = [-4,4]

- [-2,2] - [-2,2] =[-4,4]

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

Application to NN

89

[-2,2] + [-2,2] = [-4,4]

- [-2,2] - [-2,2] =[-4,4]

[0,4]

[0,4]

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

Application to NN

90

[-2,2] + [-2,2] = [-4,4]

- [-2,2] - [-2,2] =[-4,4]

[0,4]

[0,4]

[-8,0]

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

91

• 2nd at VNNComp 2024

• Written in Python with PyTorch and Numpy backend

• Supports common layers and architecture in ONNX, Keras/Tensorflow and PyTorch

• Different abstract domains implemented: Box, Zonotopes, Constrained Zonotopes, ...

• Integrated in CAISAR, an open-source platform for characterizing safety in AI systems.

caisar-platform.com

Disposition : Titre et contenu

PyRAT: Python Reachability Assessment Tool

92

caisar

Disposition : Titre et contenu

93

PyRAT: Python Reachability Assessment Tool

Use-case: Mooring lines failure detection

Disposition : Titre et contenu

Mooring incidents (DeepStar® data from 1997-2012):

 107 incidents from 73 facilities across the industry

 Potentially dire consequences

 Many FPSO have no means of monitoring lines

 Those who do face technical problems (robustness of equipment)

94

PyRAT: Python Reachability Assessment Tool

Use-case: Mooring lines failure detection

Disposition : Titre et contenu

Patented dry monitoring detection systems, based on vessel positions and low-
frequency periods (which can be obtained from Dual GPS)

95

PyRAT: Python Reachability Assessment Tool

Use-case: Mooring lines failure detection

Disposition : Titre et contenu

 Highly non-linear problem (machine learning
to recognize and classify patterns)

 Ability to deal with some degrees of variations
from various system components (such as
mooring line stiffness) and with error or noise
from monitoring system

 Cover a complete range of vessel drafts,
expected vessel responses from environment
conditions and directions and mooring line
conditions

The model

 Input: Vessel movement, mass, offset, …

 Output: group-line failures

96

PyRAT: Python Reachability Assessment Tool

Use-case: Mooring lines failure detection

Disposition : Titre et contenu

97

PyRAT: Python Reachability Assessment Tool

Use-case: Mooring lines failure detection

Ensuring robustness properties
 Stability of classification in presence of

perturbation
 Perturbation per input (sensor sensitivity)
 Different perturbations for different inputs

(Also verified functional properties but NDA)

Disposition : Citation Gris

Astuce :Pour fermer les guillemets de fin de citation ajoutez 2 apostrophes à la fin de votre texte (touche [4] du clavier)

98

Rapid intro to FM

Examples for this talk:

• Property-based testing

• Abstract interpretation

• SMT Solving

Disposition : Titre et contenu

Satisfiability Modulo Theory

99

caisar

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT

problem is a conjunction of clauses. This is called Conjunctive Normal Form.

a
b

c

c’ b’

a’

+…+

Disposition : Titre et contenu

Satisfiability Modulo Theory

100

caisar

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT

problem is a conjunction of clauses. This is called Conjunctive Normal Form.

Any logical formula can be converted

into Conjunctive Normal Form

Disposition : Titre et contenu

Satisfiability Modulo Theory

101

caisar

Disposition : Titre et contenu

Satisfiability Modulo Theory

102

caisar

Disposition : Titre et contenu

Satisfiability Modulo Theory

103

caisar

Disposition : Titre et contenu

Satisfiability Modulo Theory

104

caisar

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT

problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

Disposition : Titre et contenu

Satisfiability Modulo Theory

105

caisar

a’+b

b’+c

c+e

c’+a’

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT

problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

Decide a

Disposition : Titre et contenu

Satisfiability Modulo Theory

106

caisar

a’+b

b’+c

c+e

c’+a’

Implies...

• b is true

• c is false

Decide a

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT

problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

Disposition : Titre et contenu

Satisfiability Modulo Theory

107

caisar

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT

problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a’+b

b’+c

c+e

c’+a’

Implies...

• b is true

• c is true

• c is false

Decide a

Disposition : Titre et contenu

Satisfiability Modulo Theory

108

caisar

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT

problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a’+b

b’+c

c+e

c’+a’

=> Contradiction.

Decide a

Disposition : Titre et contenu

Satisfiability Modulo Theory

109

caisar

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT

problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a’+b

b’+c

c+e

c’+a’

=> Contradiction.

Decide a

Backtrack

Disposition : Titre et contenu

Satisfiability Modulo Theory

110

caisar

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT

problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a’+b

b’+c

c+e

c’+a’

Now we know :

a must be false

Disposition : Titre et contenu

Satisfiability Modulo Theory

111

caisar

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT

problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a’+b

b’+c

c+e

c’+a’

Now we know :

a must be false

Disposition : Titre et contenu

Satisfiability Modulo Theory

112

caisar

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT

problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a’+b

b’+c

c+e

c’+a’

Decide b

Disposition : Titre et contenu

Satisfiability Modulo Theory

113

caisar

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT

problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a’+b

b’+c

c+e

c’+a’

Decide b

Implies

• c is true

Disposition : Titre et contenu

Satisfiability Modulo Theory

114

caisar

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT

problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a’+b

b’+c

c+e

c’+a’

Decide b

Implies

• c is true

Then e can have any value

Disposition : Titre et contenu

Satisfiability Modulo Theory

115

caisar

A literal is an atom or its negation (a or a’). Clauses are disjunctions of literals (e.g. a+b’+c). A SAT

problem is a conjunction of clauses. This is called Conjunctive Normal Form.

A great deal of research is dedicated to speed up SAT solving (a notoriously NP-complete problem), such

as Conflict Driven Clause Learning, or symmetry breaking. But we will not see that here.

a’+b

b’+c

c+e

c’+a’

So now the assignments are

• False: a, True: b, c, e

• False: a, e, True: b, c

Disposition : Titre et contenu

Satisfiability Modulo Theory

116

caisar

Control flow-guided smt solving for program verification (2018, Chen, Jianhui, and Fei He)

Disposition : Titre et contenu

Satisfiability Modulo Theory

117

caisar

Control flow-guided smt solving for program verification (2018, Chen, Jianhui, and Fei He)

????

Disposition : Titre et contenu

Satisfiability Modulo Theory

118

caisar

Disposition : Titre et contenu

Satisfiability Modulo Theory

119

caisar

Images from Leonardo de Moura

Disposition : Titre et contenu

Satisfiability Modulo Theory

120

caisar

Disposition : Titre et contenu

Satisfiability Modulo Theory

121

caisar

Disposition : Titre et contenu

Satisfiability Modulo Theory

122

caisar

Back to Neural networks!

Disposition : Titre et contenu

Satisfiability Modulo Theory

123

caisar

Disposition : Titre et contenu

Satisfiability Modulo Theory

124

caisar

We know how to encode an ite already:

y = If (x < 0) then 0 else x

Becomes

(x < 0) => (y = 0)

(x >= 0) => (y = x)

Which becomes

Not (x<0) or y = 0

Not (x>=0) or y = x

We now that the relu is just a max, which is just an ite.

So let’s speak simpler

Disposition : Titre et contenu

Satisfiability Modulo Theory

125

caisar

Disposition : Titre et contenu

Satisfiability Modulo Theory

126

caisar

Piecewise Linear Neural Network verification: A comparative study (2017, Bunel, Turkaslan, Torr, Kohli)

Disposition : Titre et contenu

Satisfiability Modulo Theory

127

caisar

Piecewise Linear Neural Network verification: A comparative study (2017, Bunel, Turkaslan, Torr, Kohli)

Disposition : Titre et contenu

Satisfiability Modulo Theory – SMT-Lib Standard

128

caisar

Disposition : Titre et contenu

Satisfiability Modulo Theory – SMT-Lib Standard

129

caisar

(declare-fun x1 () Int)

(declare-fun x2 () Int)

(declare-fun ain () Int)

(declare-fun aout () Int)

(declare-fun bin () Int)

(declare-fun bout () Int)

(declare-fun y () Int)

Disposition : Titre et contenu

Satisfiability Modulo Theory – SMT-Lib Standard

130

caisar

(declare-fun x1 () Int)

(declare-fun x2 () Int)

(declare-fun ain () Int)

(declare-fun aout () Int)

(declare-fun bin () Int)

(declare-fun bout () Int)

(declare-fun y () Int)

(define-fun relu ((res Int)) Int (ite (> res 0) res 0))

Disposition : Titre et contenu

Satisfiability Modulo Theory – SMT-Lib Standard

131

caisar

(declare-fun x1 () Int)

(declare-fun x2 () Int)

(declare-fun ain () Int)

(declare-fun aout () Int)

(declare-fun bin () Int)

(declare-fun bout () Int)

(declare-fun y () Int)

(define-fun relu ((res Int)) Int (ite (> res 0) res 0))

(assert (<= (- 2) x1))

(assert (<= (- 2) x2))

(assert (<= x1 2))

(assert (<= x2 2))

Disposition : Titre et contenu

Satisfiability Modulo Theory – SMT-Lib Standard

132

caisar

(declare-fun x1 () Int)

(declare-fun x2 () Int)

(declare-fun ain () Int)

(declare-fun aout () Int)

(declare-fun bin () Int)

(declare-fun bout () Int)

(declare-fun y () Int)

(define-fun relu ((res Int)) Int (ite (> res 0) res 0))

(assert (<= (- 2) x1))

(assert (<= (- 2) x2))

(assert (<= x1 2))

(assert (<= x2 2))

(assert (= ain (+ x1 x2)))

(assert (= bin (- x1 (- x2))))

Disposition : Titre et contenu

Satisfiability Modulo Theory – SMT-Lib Standard

133

caisar

(declare-fun x1 () Int)

(declare-fun x2 () Int)

(declare-fun ain () Int)

(declare-fun aout () Int)

(declare-fun bin () Int)

(declare-fun bout () Int)

(declare-fun y () Int)

(define-fun relu ((res Int)) Int (ite (> res 0) res 0))

(assert (<= (- 2) x1))

(assert (<= (- 2) x2))

(assert (<= x1 2))

(assert (<= x2 2))

(assert (= ain (+ x1 x2)))

(assert (= bin (- x1 (- x2))))

(assert (= aout (reluR ain)))

(assert (= bout (reluR bin)))

Disposition : Titre et contenu

Satisfiability Modulo Theory – SMT-Lib Standard

134

caisar

(declare-fun x1 () Int)

(declare-fun x2 () Int)

(declare-fun ain () Int)

(declare-fun aout () Int)

(declare-fun bin () Int)

(declare-fun bout () Int)

(declare-fun y () Int)

(define-fun relu ((res Int)) Int (ite (> res 0) res 0))

(assert (<= (- 2) x1))

(assert (<= (- 2) x2))

(assert (<= x1 2))

(assert (<= x2 2))

(assert (= ain (+ x1 x2)))

(assert (= bin (- x1 (- x2))))

(assert (= aout (reluR ain)))

(assert (= bout (reluR bin)))

(assert (= y (- aout (- bout))))

Disposition : Titre et contenu

Satisfiability Modulo Theory – SMT-Lib Standard

135

caisar

(declare-fun x1 () Int)

(declare-fun x2 () Int)

(declare-fun ain () Int)

(declare-fun aout () Int)

(declare-fun bin () Int)

(declare-fun bout () Int)

(declare-fun y () Int)

(define-fun relu ((res Int)) Int (ite (> res 0) res 0))

(assert (<= (- 2) x1))

(assert (<= (- 2) x2))

(assert (<= x1 2))

(assert (<= x2 2))

(assert (= ain (+ x1 x2)))

(assert (= bin (- x1 (- x2))))

(assert (= aout (reluR ain)))

(assert (= bout (reluR bin)))

(assert (= y (- aout (- bout))))

(assert (<= y -5))

Disposition : Titre et contenu

Satisfiability Modulo Theory – SMT-Lib Standard

136

caisar

(declare-fun x1 () Int)

(declare-fun x2 () Int)

(declare-fun ain () Int)

(declare-fun aout () Int)

(declare-fun bin () Int)

(declare-fun bout () Int)

(declare-fun y () Int)

(define-fun relu ((res Int)) Int (ite (> res 0) res 0))

(assert (<= (- 2) x1))

(assert (<= (- 2) x2))

(assert (<= x1 2))

(assert (<= x2 2))

(assert (= ain (+ x1 x2)))

(assert (= bin (- x1 (- x2))))

(assert (= aout (reluR ain)))

(assert (= bout (reluR bin)))

(assert (= y (- aout (- bout))))

(assert (<= y -5))

(check-sat)

Disposition : Vide

137

Tedious isn’t it...

Text

Characterizing Artificial Intelligence Safety and Reliability

A federative platform for analysis of artificial intelligence system components

Disposition : Titre et contenu

Principle: Maximize coverage of AI models and properties

• Common expressive specification language

• Easy extensibility through clear interfaces

• Heuristic-aided V&V analysis

• Common aggregation of analysis outputs

Target: SVM, Neural Networks, XGBoost models, ensemble models,…

Application: depending on the used plug-ins. Currently includes

• SAVer for SVM

• Colibri for XGboost

• PyRAT, AB-Crown, Nnenum, Marabou for NN

Background: The federative platform strategy for V&V has been successful for critical SW (see, for example, Frama-C and Why3)

139

What CAISAR is

Disposition : Titre et contenu

140

What CAISAR is

Characterizing AI Safety And Robustness

Disposition : Titre et contenu

141

What CAISAR is

Characterizing AI Safety And Robustness

Disposition : Titre et contenu

142

Disposition : Titre et contenu

143

What CAISAR is

Characterizing AI Safety And Robustness

Disposition : Titre et contenu

144

What CAISAR is

Characterizing AI Safety And Robustness

Disposition : Titre et contenu

145

What CAISAR is (going to be)

Characterizing AI Safety And Robustness

caisar-platform.com

Disposition : Titre et contenu

Our lab

Verification Test Platform Symbolic XAI & uncertainty

PARTICULPyRAT CAISARAIMOS Colibri & co

146caisar-platform.com

Verification of safety

and robustness

formal specifications

through Abstract

Interpretation

Metamorphic testing

applied to AI

(Available for

teaching)

Open-source,

modular, extensible

platform to

Characterize AI Safety

And Robustness

Open-source

Symbolic AI tools,

Safe-by-design

Constraint solvers

Case-based

reasoning,

explainability, out-of-

distribution detection

Disposition : Titre et contenu

147

Symbolic AI: Colibri’s

Colibri.frama-c.com

Principle: Safe-by-design Symbolic AI through a constraint solving

library

• Separately prove, in Why3, the necessary bricks for constraint

solving: Floating-point numbers, integers, bit-vectors, strings, etc.

• Allow for selection of these bricks to tailor the construction of a

solver to the needs of the user

• Automatically extract a C implementation of the solver

Target: XGBoost models, embedded software

Application: Energy sector (e.g., IRSN), space (e.g., NASA). Can

also be used as a verification tool (winner of SMT-Competition since

2017), which makes it an essential brick of other tools such as

Frama-C and GATeL.

Background: Constraint solving is used in several critical software

domains

Disposition : Citation

“

Astuce :Pour fermer les guillemets de fin de citation ajoutez 2 apostrophes à la fin de votre texte (touche [4] du clavier)

Potential user

148

Cool, but where do I start ?

Disposition : Titre et contenu

• You’re a student, a researcher, or a professional who want to evaluate solutions…

• You want automatic test generation with AIMOS or verification with PyRAT: free licence available

• You want a more general way of testing and verification: CAISAR is open-source

• You want to play around with XAI methods : CaBRNet is open-source

• You’re a teacher and want to use tools in lab sessions for your students

• Same as above but there are also course material available that we can help you adapt

• You’re a professional who wants to use tools in a production setting

• Open-source platforms and their documentations are available, support licenses are possible

• License is possible for closed-source tools PyRAT and AIMOS

• When in doubt: contact us ! Zakaria.chihani@cea.fr

149

Who are you? What do you want?

Disposition : Titre seul

150

Not the complete picture…

Software Machine

“Traditional” human-written software

Machine generated models

… low level……

General purpose provers and platforms (Why3, Alt-Ergo, Z3, Colibri, TLA+, K-framework,…)

Krakatoa,

OpenJML
(java programs)

Frama-C,

Astrée

Polyspace
(C/C++ programs)GATeL

(Lustre programs)

BINSEC

Unisim

SPARK
(Ada programs)

||

Miasm

CompCert
(Compilation of C)

B-Method

SCADE

Papyrus
BAP

seL4
(proven

microkernel)

aiT WCET analyzers

CoVaC
(Compiler validation)

PyRATEran

ReluVal
CNN-Cert Planet

MIPVerify
Sherlock

Neurify

High level (model… source code…)

SAVer

Not NN

