
Design, Test, Repair: Software Quality for Neural
Networks
ESSAI 2025
Julien Girard-Satabin
Zakaria Chihani
Dorin Doncenco

CEA LIST

2025-07-03

This work was supported by the French Agence Nationale de la
Recherche (ANR) through SAIF (ANR-23-PEIA-0006) and
DeepGreen (ANR-23-DEGR-0001) as part of the France 2030
programme.

Recaps on previous course

Local robustness (Katz et al. 2017)

Let a classifier 𝑓 : 𝒳 ↦ 𝒴. Given 𝑥 ∈ 𝒳 and 𝜀 ∈ ℝ⋘ 1 the problem of local
robustness is to prove that ∀𝑥′. ‖𝑥 − 𝑥′‖𝑝 < 𝜀 → 𝑓(𝑥) = 𝑓(𝑥′)

Bugfixing Neural Networks 2025-07-03 2 / 73

𝐿1(𝑥) = ∑𝑖|𝑥𝑖|

𝑥
𝑦

𝑧

𝐿2(𝑥) = √∑𝑖 (𝑥𝑖)
2

𝑥
𝑦

𝑧

𝐿∞(𝑥) = max𝑖|𝑥𝑖|

𝑥
𝑦

𝑧

Bugfixing Neural Networks 2025-07-03 3 / 73

This session

1. Testing neural networks with logical relations
2. Bugfixing neural networks, with guarantees
3. Encoding logical constraints within neural networks
4. Open questions on properly evaluating the « quality » of ML programs

Bugfixing Neural Networks 2025-07-03 4 / 73

A brief introduction on
testing

How do you ensure your program « works well »?

What are the most common bugs/malfunctions you encounter?

How do you ensure your program « works well »?

What are the most common bugs/malfunctions you encounter?

• numerical instabilities that invalidated two submissions we tried to
reproduce

• debugging shapes : funniest thing to do ever 🤠

(Zech et al. 2018) 😊 ← actually dead inside

First introduction of testing on ML

𝛿 = acctrain − acctest (replace accuracy by other suitable metric in RL or
unsupervised learning)

Bugfixing Neural Networks 2025-07-03 8 / 73

First introduction of testing on ML

Testing a program

The activity of running a program on a predefined scenario, and assess the program’s
output against an expected behaviour (an oracle)

• which scenarios?

‣ how do they generalize?

• what is the expected behaviour under test?

• how can the test exhibit and help us understand a program failure?

Bugfixing Neural Networks 2025-07-03 9 / 73

First introduction of testing on ML

Testing a program

The activity of running a program on a predefined scenario, and assess the program’s
output against an expected behaviour (an oracle)

• which scenarios?
‣ on unseen test data
‣ how do they generalize?

• what is the expected behaviour under test?

• how can the test exhibit and help us understand a program failure?

Bugfixing Neural Networks 2025-07-03 9 / 73

First introduction of testing on ML

Testing a program

The activity of running a program on a predefined scenario, and assess the program’s
output against an expected behaviour (an oracle)

• which scenarios?
‣ on unseen test data
‣ how do they generalize?

– good question!
• what is the expected behaviour under test?

• how can the test exhibit and help us understand a program failure?

Bugfixing Neural Networks 2025-07-03 9 / 73

First introduction of testing on ML

Testing a program

The activity of running a program on a predefined scenario, and assess the program’s
output against an expected behaviour (an oracle)

• which scenarios?
‣ on unseen test data
‣ how do they generalize?

– good question!
• what is the expected behaviour under test?
‣ controlled metric degradation

• how can the test exhibit and help us understand a program failure?

Bugfixing Neural Networks 2025-07-03 9 / 73

First introduction of testing on ML

Testing a program

The activity of running a program on a predefined scenario, and assess the program’s
output against an expected behaviour (an oracle)

• which scenarios?
‣ on unseen test data
‣ how do they generalize?

– good question!
• what is the expected behaviour under test?
‣ controlled metric degradation

• how can the test exhibit and help us understand a program failure?
‣ identify spurious counterexample?

Bugfixing Neural Networks 2025-07-03 9 / 73

Testing for neural network - the question of
scenario

Crucial component of testing is to identify the correct scenarios

Since the search space is enormous, one needs to find relevant scenarios
(accidents are hopefully rare in a dataset drawn from real life)

Bugfixing Neural Networks 2025-07-03 10 / 73

Testing for neural network - the question of
scenario

Crucial component of testing is to identify the correct scenarios

Since the search space is enormous, one needs to find relevant scenarios
(accidents are hopefully rare in a dataset drawn from real life)

Generating scenarios!

Bugfixing Neural Networks 2025-07-03 10 / 73

Testing for neural network - the question of
scenario

Impact of generated scenarios (from (Zhang et al. 2018))

Other examples (Pei et al. 2017; Sun et al. 2018; Tian et al. 2017; Dola, Dwyer, and Soffa 2021; Adjed
et al. 2022)

Bugfixing Neural Networks 2025-07-03 11 / 73

Another approach: Metamorphic testing

Certain relationships (e.g., 𝑅1, 𝑅2) on
some inputs (e.g., 𝑎, 𝑏, 𝑐) should
induce, in a software 𝑆 , other
relationships (e.g., 𝑅′1, 𝑅′2)

∀𝑎, 𝑏, 𝑐, 𝑅1(𝑎, 𝑏) ∧ 𝑅2(𝑏, 𝑐) ⇒
𝑅′1(𝑆(𝑎), 𝑆(𝑏)) ∨ 𝑅′2(𝑆(𝑏), 𝑆(𝑐)

Example: computing the shortest
path between two nodes on an
undirected graph should be
impervious to symmetry

Bugfixing Neural Networks 2025-07-03 12 / 73

Another approach: Metamorphic testing

Blur images are not expected to be
under the system scope

Bugfixing Neural Networks 2025-07-03 13 / 73

Metamorphic testing with AIMOS

AIMOS: AI Metamorphic Observing
Software (Lemesle et al. 2023)

Assess the stability of a welding
production line (in particular: able to
spot that a model was performing
too well outside of its dedicated
scope)

Bugfixing Neural Networks 2025-07-03 14 / 73

Metamorphic testing with AIMOS

Try AIMOS at https://caisar-platform.com/aimos-demo

Bugfixing Neural Networks 2025-07-03 15 / 73

https://caisar-platform.com/aimos-demo

Metamorphic testing with AIMOS

A declarative framework for Metamorphic Testing (Deng et al. 2023) with automated rule
inference from natural language and generative AI for scenario generation

Bugfixing Neural Networks 2025-07-03 16 / 73

Industrial tools for testing ML

MLflow: one state-of-the-art platform for evaluating and monitoring machine learning

Bugfixing Neural Networks 2025-07-03 17 / 73

« Program testing can be used very
effectively to show the presence of
bugs but never to show their
absence.» (Dijkstra 1976)

On the interest of bugfixing
with formal verification

Bugfixing?

Bugfixing neural networks

Given an input 𝑥, a neural network 𝑓 , a faulty prediction 𝑓(𝑥) = 𝑦false and
an expected prediction 𝑦true, bugfixing means constructing a new 𝑓 ′
such that 𝑓 ′(𝑥) = 𝑦true

Bugfixing Neural Networks 2025-07-03 19 / 73

Why bugfixing in the first place?

• Retraining may be too costly
• Some behaviours must be preserved
• Particular datapoints must absolutely not fail

Bugfixing Neural Networks 2025-07-03 20 / 73

Formal verification to the rescue

Bugfixing Neural Networks 2025-07-03 21 / 73

Definition

Guaranteed Neural Network repair (Goldberger et al. 2020)

Given a NN 𝑓 : 𝑥 → 𝑦, a collection of inputs 𝒳 = {𝑥1,…, 𝑥𝑝}, a precondition
that holds on all inputs 𝑃(𝒳) and a postcondition on all outputs 𝑄(𝒴),
find a new DNN 𝑓 ′ such that 𝑃(𝒳) ⊧ 𝑄(𝒴) and that the distance between
𝑓 and 𝑓 ′ is minimal.

Note that, as with local robustness (see Session 2), this property is local

Bugfixing Neural Networks 2025-07-03 22 / 73

Exemple

Computing the distance between 𝑓 …

𝑛00

𝑛01

𝑛00 𝑛10

𝑛01 𝑛11

𝑛10 𝑛20

𝑛11 𝑛21

−1

1

−2 2

1

1

−1 −1

Bugfixing Neural Networks 2025-07-03 23 / 73

Exemple

… and 𝑓 ′:

𝑛00

𝑛01

𝑛00 𝑛10

𝑛01 𝑛11

𝑛10 𝑛20

𝑛11 𝑛21

1.5

1 −3

−0.5

1

0.5

−1 −1.5

Bugfixing Neural Networks 2025-07-03 23 / 73

Exemple

… and 𝑓 ′:

𝑛00

𝑛01

𝑛00 𝑛10

𝑛01 𝑛11

𝑛10 𝑛20

𝑛11 𝑛21

−1

1

−2 2

1

1

−1 −1

1.5

1 −3

−0.5

1

0.5

−1 −1.5

‖𝑓 − 𝑓{′}‖𝐿 = ∑
𝑛
{𝑖=2}∑{𝑗=1}∑{𝑘=1}|𝑊𝑖[𝑗,𝑘] −𝑊

{′}
𝑖 [𝑗, 𝑘]|𝐿

Bugfixing Neural Networks 2025-07-03 23 / 73

Exemple

… and 𝑓 ′:

𝑛00

𝑛01

𝑛00 𝑛10

𝑛01 𝑛11

𝑛10 𝑛20

𝑛11 𝑛21

−1

1

−2 2

1

1

−1 −1

1.5

1 −3

−0.5

1

0.5

−1 −1.5

‖𝑓 − 𝑓{′}‖𝐿 = ∑
𝑛
{𝑖=2}∑{𝑗=1}∑{𝑘=1}|𝑊𝑖[𝑗,𝑘] −𝑊

{′}
𝑖 [𝑗, 𝑘]|𝐿

|1 − 1.5| + | − 2 + 3| + |2 − 1| + | − 1 + 0.5| + |1 − 0.5| + | − 1 + 1.5| + | − 1 + 1| + |1 − 1| =
|0.5| + |1| + |1| + | − 0.5| + |0.5| + |0.5| + 0 + 0 = 4

Bugfixing Neural Networks 2025-07-03 23 / 73

Exemple

Find the best 𝑤𝑖

𝑛00

𝑛01

𝑛00 𝑛10

𝑛01 𝑛11

𝑛10 𝑛20

𝑛11 𝑛21

−1+𝑤4

1+𝑤1

−2+𝑤3 2+𝑤2

1+𝑤5

1+𝑤8

−1+𝑤7 −1+𝑤6

Search space is now no more the inputs, but the weights

Bugfixing Neural Networks 2025-07-03 24 / 73

Exemple

𝑛00

𝑛01

𝑛00 𝑛10

𝑛01 𝑛11

𝑛10 𝑛20

𝑛11 𝑛21

−1+𝑤4

1+𝑤1

−2+𝑤3 2+𝑤2

1+𝑤5

1+𝑤8

−1+𝑤7 −1+𝑤6

𝑛10 = ReLU(1 + 𝑤1)𝑛01 +ReLU(−2 + 𝑤3)𝑛00
𝑛11 = ReLU(2 + 𝑤2)𝑛01 +ReLU(−1 + 𝑤4)𝑛00
𝑛20 = ReLU(1 + 𝑤5)𝑛10 +ReLU(−1 + 𝑤7)𝑛11
𝑛21 = ReLU(−1 + 𝑤6)𝑛10 +ReLU(1 + 𝑤8)𝑛11

Providing we want to get 𝑛21 ≥ 𝑛20, that is to say,
ensure that

ReLU(−1 + 𝑤6)𝑛10 +ReLU(1 + 𝑤8)𝑛11 ≥

ReLU(1 + 𝑤5)𝑛10 +ReLU(−1 + 𝑤7)𝑛11
=
ReLU(−1 + 𝑤6)(ReLU(1 + 𝑤1)𝑛01 +ReLU(−2 + 𝑤3)𝑛00) +

ReLU(1 + 𝑤8)(ReLU(2 + 𝑤2)𝑛01 +ReLU(−1 + 𝑤4)𝑛00) ≥

ReLU(1 + 𝑤5)(ReLU(1 + 𝑤1)𝑛01 +ReLU(−2 + 𝑤3)𝑛00) +

ReLU(−1 + 𝑤7)(ReLU(2 + 𝑤2)𝑛01 +ReLU(−1 + 𝑤4)𝑛00)

Bugfixing Neural Networks 2025-07-03 25 / 73

Rephrasing the problem

Key insight: for a given set of inputs, the network is in a fixed state

Bugfixing Neural Networks 2025-07-03 26 / 73

Rephrasing the problem

𝑛00

𝑛01

𝑛00 𝑛10

𝑛01 𝑛11

𝑛10 𝑛20

𝑛11 𝑛21

−1+𝑤4

1+𝑤1

−2+𝑤3 2+𝑤2

1

1

−1 −1

Given 𝑛01 = 3 and 𝑛00 = 4

𝑛10 = (1 + 𝑤1)3 + (−2 + 𝑤3)4

𝑛11 = (2 + 𝑤2)3 + (−1 + 𝑤4)4

𝑛20 = ReLU(𝑛10) + ReLU(−𝑛11)

𝑛21 = ReLU(−𝑛10) + ReLU(𝑛11)

Bugfixing Neural Networks 2025-07-03 27 / 73

Rephrasing the problem

𝑛00

𝑛01

𝑛00 𝑛10

𝑛01 𝑛11

𝑛10 𝑛20

𝑛11 𝑛21

−1+𝑤4

1+𝑤1

−2+𝑤3 2+𝑤2

1

1

−1 −1

Given 𝑛01 = 3 and 𝑛00 = 4

𝑛10 = (1 + 𝑤1)3 + (−2 + 𝑤3)4

𝑛11 = (2 + 𝑤2)3 + (−1 + 𝑤4)4

𝑛20 = ReLU(3𝑤1 + 4𝑤3 − 5) − ReLU(3𝑤2 + 4𝑤4 + 2)

𝑛21 = −ReLU(3𝑤1 + 4𝑤3 − 5) + ReLU(3𝑤2 + 4𝑤4 + 2)

Bugfixing Neural Networks 2025-07-03 27 / 73

Rephrasing the problem

𝑛00

𝑛01

𝑛00 𝑛10

𝑛01 𝑛11

𝑛10 𝑛20

𝑛11 𝑛21

−1+𝑤4

1+𝑤1

−2+𝑤3 2+𝑤2

1

1

−1 −1

Then, checking whether 𝑛21 ≥ 𝑛20 is a
problem only in the variables 𝑤𝑖

Given 𝑛01 = 3 and 𝑛00 = 4

𝑛10 = (1 + 𝑤1)3 + (−2 + 𝑤3)4

𝑛11 = (2 + 𝑤2)3 + (−1 + 𝑤4)4

𝑛20 = ReLU(3𝑤1 + 4𝑤3 − 5) − ReLU(3𝑤2 + 4𝑤4 + 2)

𝑛21 = −ReLU(3𝑤1 + 4𝑤3 − 5) + ReLU(3𝑤2 + 4𝑤4 + 2)

Bugfixing Neural Networks 2025-07-03 27 / 73

Rephrasing the problem

𝑛00

𝑛01

𝑛00 𝑛10

𝑛01 𝑛11

𝑛10 𝑛20

𝑛11 𝑛21

−1+𝑤4

1+𝑤1

−2+𝑤3 2+𝑤2

1

1

−1 −1

Then, checking whether 𝑛21 ≥ 𝑛20 is a
problem only in the variables 𝑤𝑖
𝑃 = ⋀4

𝑖=1
−𝛿 ≤ 𝑤𝑖 ≤ 𝛿,𝑄 = 𝑛21 ≥ 𝑛20

Given 𝑛01 = 3 and 𝑛00 = 4

𝑛10 = (1 + 𝑤1)3 + (−2 + 𝑤3)4

𝑛11 = (2 + 𝑤2)3 + (−1 + 𝑤4)4

𝑛20 = ReLU(3𝑤1 + 4𝑤3 − 5) − ReLU(3𝑤2 + 4𝑤4 + 2)

𝑛21 = −ReLU(3𝑤1 + 4𝑤3 − 5) + ReLU(3𝑤2 + 4𝑤4 + 2)

Bugfixing Neural Networks 2025-07-03 27 / 73

Rephrasing the problem

𝑏1

𝑤1

𝑤3

𝑤2

𝑤4

𝑏1

𝑛10

𝑛11

𝑛20

𝑛21

−5

3

4

3

4

2

1

−1 −1

1

𝑃 = ⋀4
𝑖=1
−𝛿 ≤ 𝑤𝑖 ≤ 𝛿,𝑄 = 𝑛21 ≥ 𝑛20

Given 𝑛01 = 3 and 𝑛00 = 4

𝑛10 = (1 + 𝑤1)3 + (−2 + 𝑤3)4

𝑛11 = (2 + 𝑤2)3 + (−1 + 𝑤4)4

𝑛20 = ReLU(3𝑤1 + 4𝑤3 − 5) −
ReLU(3𝑤2 + 4𝑤4 + 2)

𝑛21 = −ReLU(3𝑤1 + 4𝑤3 − 5) +
ReLU(3𝑤2 + 4𝑤4 + 2)

Bugfixing Neural Networks 2025-07-03 28 / 73

Rephrasing the problem

𝑏1

𝑤1

𝑤3

𝑤2

𝑤4

𝑏1

𝑛10

𝑛11

𝑛20

𝑛21

−5

3

4

3

4

2

1

−1 −1

1

𝑃 = ⋀4
𝑖=1
−𝛿 ≤ 𝑤𝑖 ≤ 𝛿,𝑄 = 𝑛21 ≥ 𝑛20

Given 𝑛01 = 3 and 𝑛00 = 4

𝑛10 = (1 + 𝑤1)3 + (−2 + 𝑤3)4

𝑛11 = (2 + 𝑤2)3 + (−1 + 𝑤4)4

𝑛20 = ReLU(3𝑤1 + 4𝑤3 − 5) −
ReLU(3𝑤2 + 4𝑤4 + 2)

𝑛21 = −ReLU(3𝑤1 + 4𝑤3 − 5) +
ReLU(3𝑤2 + 4𝑤4 + 2)

Local robustness on the weights!

Bugfixing Neural Networks 2025-07-03 28 / 73

Rephrasing the problem
Bugfixing NN(network 𝑓, Precondition 𝑃, Postcondition 𝑄, Collection of inputs 𝒳, Layer 𝐿):
1 𝑓 ′ = 𝑓
2 l = []
3 for 𝑥 in 𝒳:
4 if CHECK(𝑓 ′,𝑃,𝑄,𝑥) == SAT then:
5 APPEND(l,𝑓 ′)
6 else:
7 𝑔 = BUILD_SYMBOLIC_WEIGHT_NET(𝑓 ′,𝑃,𝑄,𝐿)
8 𝑓 ′ = ASSIGN_WEIGHTS(𝑓 ′,𝑤,𝑃,𝑄) // NN with weights tricks
9 CHECK(𝑓 ′,𝑃,𝑄,𝑥)

10
11 𝑓″ = COMBINE_NETS(l)
12 if CHECK(𝑓″,P,Q):
13 return 𝑓″

14 else:
15 RESTART

Bugfixing Neural Networks 2025-07-03 29 / 73

Find the minimal weights
perturbations that preserves a
neural network behaviour

Initial limitations

From (Goldberger et al. 2020). Large modifications result in neural network degradation

Bugfixing Neural Networks 2025-07-03 30 / 73

Initial limitations

From (Goldberger et al. 2020). Several days to fix three inputs seems too much…

Bugfixing Neural Networks 2025-07-03 30 / 73

Initial limitations

Why is so? Because actually encoding « Preserve the accuracy » is a difficult
property that cannot be expressed with convex sets!

Bugfixing Neural Networks 2025-07-03 31 / 73

Initial limitations

We still want to preserve the benefits of formal bugfixing!
• No need to retrain the network
• Guarantee to keep behaviours on given inputs

Main limitations:
• Modifying only one single layer limits the scope of our debugging
• Prover queries can be expensive (See Session 2 on theoretical complexity)

Bugfixing Neural Networks 2025-07-03 32 / 73

Multi-layer reparation

A neural network 𝑓 is considered a composition of subnetworks 𝑓𝑘 such that
𝑓 = 𝑓0 ∘ 𝑓1 ∘ 𝑓2… ∘ 𝑓𝑝. The output layer of 𝑓𝑘−1 is the input layer of 𝑓𝑘. This layer
is present in the original network as 𝐿𝑖.

Bugfixing Neural Networks 2025-07-03 33 / 73

Multi-layer reparation

A neural network 𝑓 is considered a composition of subnetworks 𝑓𝑘 such that
𝑓 = 𝑓0 ∘ 𝑓1 ∘ 𝑓2… ∘ 𝑓𝑝. The output layer of 𝑓𝑘−1 is the input layer of 𝑓𝑘. This layer
is present in the original network as 𝐿𝑖.

Each single layer modification procedure is then launched on the 𝑓𝑘s, their
distance against the original 𝑓𝑘 is computed and summed up.

Bugfixing Neural Networks 2025-07-03 33 / 73

Multi-layer reparation

A neural network 𝑓 is considered a composition of subnetworks 𝑓𝑘 such that
𝑓 = 𝑓0 ∘ 𝑓1 ∘ 𝑓2… ∘ 𝑓𝑝. The output layer of 𝑓𝑘−1 is the input layer of 𝑓𝑘. This layer
is present in the original network as 𝐿𝑖.

Each single layer modification procedure is then launched on the 𝑓𝑘s, their
distance against the original 𝑓𝑘 is computed and summed up.

To reuse Single Layer Repair, we need to provide input/output constraints to
intermediate layers

Bugfixing Neural Networks 2025-07-03 33 / 73

Multi-layer reparation

𝑛00

𝑛10

𝑛11

𝑛20

𝑛21

1

1

0.01

100

𝑛30

𝑛31

𝑛40

𝑛41

1000

0.01

1

−11

−1

Bugfixing Neural Networks 2025-07-03 34 / 73

Multi-layer reparation

𝑛00

𝑛10

𝑛11

𝑛20

𝑛21

1

1

0.01

100

𝑛30

𝑛31

𝑛40

𝑛41

1000

0.01

1

−11

−1𝑓1 𝑓2

Bugfixing Neural Networks 2025-07-03 34 / 73

Multi-layer reparation

𝑛00

𝑛10

𝑛11

𝑛20

𝑛21

1

1

0.01

100

𝑛30

𝑛31

𝑛40

𝑛41

1000

0.01

1

−11

−1𝑓1 𝑓2

Bugfixing Neural Networks 2025-07-03 34 / 73

Multi-layer reparation

𝑛00

𝑛10

𝑛11

𝑛20

𝑛21

1

1

0.01

100 𝑓1

𝑛20

𝑛21

𝑛30

𝑛31

𝑛40

𝑛41

1000

0.01

1

−11

−1 𝑓2

Bugfixing Neural Networks 2025-07-03 35 / 73

Multi-layer reparation

𝑛00

𝑛10

𝑛11

𝑛20

𝑛21

1

1

0.01

100

0.01

100
1

𝑓1

𝑛20

𝑛21

𝑛30

𝑛31

𝑛40

𝑛41

1000

0.01

1

−11

−1

0.01

100

11

−11

𝑓2

𝑛00 = 1 ⇒ 𝑛41 = 11 > 𝑛40 = −11.

Target behaviour for 𝑛00 : 𝑛41 < 𝑛40

Bugfixing Neural Networks 2025-07-03 36 / 73

Multi-layer reparation

𝑛00

𝑛10

𝑛11

𝑛20

𝑛21

1

1

0.01

100

0.01

100
1

𝑓1

𝑛20

𝑛21

𝑛30

𝑛31

𝑛40

𝑛41

1000

0.01

1

−11

−1

0.01

100

11

−11

𝑓2

𝑛00 = 1 ⇒ 𝑛41 = 11 > 𝑛40 = −11.

Target behaviour for 𝑛00 : 𝑛41 < 𝑛40
Three main steps:
1. Assign modified input and

outputs bounds to each
subnetwork

2. Perform 1-layer verification
query to reach the expected
behaviour

3. Combine all 1-layer
modifications

Bugfixing Neural Networks 2025-07-03 36 / 73

Multi-layer reparation

𝑛00

𝑛10

𝑛11

𝑛20

𝑛21

1

1

0.01

100

0.01

100
1

𝑓1

𝑛20

𝑛21

𝑛30

𝑛31

𝑛40

𝑛41

1000

0.01

1

−11

−1

0.01

100

11

−11

𝑓2

Target behaviour: 𝑛41 < 𝑛40
1. Propose assignemts:

• 𝑓1 : 𝑛20 = 0 (𝑛21 stay
unchanged)

• 𝑓2 : 𝑛40 < 𝑛41
2. Apply Single Layer Repair on 𝑓1

and 𝑓2
3. Merge 𝑓 ′1 and 𝑓 ′2

Bugfixing Neural Networks 2025-07-03 37 / 73

Multi-layer reparation

𝑛00

𝑛10

𝑛11

𝑛20

𝑛21

1

1

0.01
0

100

0.01

100
1

𝑓1

𝑛20

𝑛21

𝑛30

𝑛31

𝑛40

𝑛41

1000

0.01

1

−11

−1
1.1

0.01

100

11

−11

𝑓2

Target behaviour: 𝑛41 < 𝑛40
1. Propose assignemts:

• 𝑓1 : 𝑛20 = 0 (𝑛21 stay
unchanged)

• 𝑓2 : 𝑛40 < 𝑛41
2. Apply Single Layer Repair on 𝑓1

and 𝑓2
3. Merge 𝑓 ′1 and 𝑓 ′2

Bugfixing Neural Networks 2025-07-03 37 / 73

Multi-layer reparation

𝑛00

𝑛10

𝑛11

𝑛20

𝑛21

1

1

0.01
0

100

0.01

100
1

𝑓1

𝑛20

𝑛21

𝑛30

𝑛31

𝑛40

𝑛41

1000

0.01

1

−11

−1
1.1

0.01

100

11

−11

𝑓2

Target behaviour: 𝑛41 < 𝑛40
1. Propose assignemts:

• 𝑓1 : 𝑛20 = 0 (𝑛21 stay
unchanged)

• 𝑓2 : 𝑛40 < 𝑛41
2. Apply Single Layer Repair on 𝑓1

and 𝑓2
3. Merge 𝑓 ′1 and 𝑓 ′2

Bugfixing Neural Networks 2025-07-03 37 / 73

Multi-layer reparation

𝑛00

𝑛10

𝑛11

𝑛20

𝑛21

1

1

0.01
0

100

0.01

100
1

𝑓1

𝑛20

𝑛21

𝑛30

𝑛31

𝑛40

𝑛41

1000

0.01

1

−11

−1
1.1

0.01

100

11

−11

𝑓2

Target behaviour: 𝑛41 < 𝑛40
1. Propose assignemts:

• 𝑓1 : 𝑛20 = 0 (𝑛21 stay
unchanged)

• 𝑓2 : 𝑛40 < 𝑛41
2. Apply Single Layer Repair on 𝑓1

and 𝑓2
3. Merge 𝑓 ′1 and 𝑓 ′2

Bugfixing Neural Networks 2025-07-03 37 / 73

Multi-layer reparation

Multi-layer DNN bugfixing(network 𝑓, Collection of inputs 𝒳, Layer indices ℐ, timeout 𝑡):
1 for 𝑗 in card(𝒳):
2 assigns = 𝑓(𝑥𝑗) // Compute value assignments for each layer
3 𝑓0,…, 𝑓𝑘 = SPLIT(𝑓, ℐ)
4 best_change, best_cost = ⊥, ∞
5 while 𝑡 not exceeded:
6 for 𝑙 ∈ ℐ:
7 𝑐𝑙 = PROPOSE_CHANGE()
8 for 𝑗 in card(𝒳):
9 assigns = assigns + 𝑐𝑙 // New assignments to prepare SLD

10 for 𝑙 ∈ ℐ:
11 𝑓 ′𝑙 , cost𝑙=SLD(𝑓 ′0, < 𝑥0, assigns0 >,…,< 𝑥𝐿, assigns𝑙 >) // Perform Single Layer Debugging
12 cost = TOTAL_COST(cost0,…,cost𝑘)
13 if cost < best_cost:
14 best_cost = cost
15 best_change =< 𝑓 ′0,…, 𝑓 ′𝑘 >
16 return best_cost, COMBINE(best_change)

Bugfixing Neural Networks 2025-07-03 38 / 73

Multi-layer reparation

How to propose assignments?

Existing approaches use random search (but could be enhanced)!

Bugfixing Neural Networks 2025-07-03 39 / 73

Multi-layer reparation

From (Goldberger et al. 2020). Large
modifications result in neural network

degradation
From (Refaeli and Katz 2021) . Proper search

space pruning with MCTS result in less
performance degradation.

Bugfixing Neural Networks 2025-07-03 40 / 73

Delta-debugging

Delta-debugging (Zeller and Hildebrandt 2002)

Given an input 𝑥 and a program 𝑓 that fails, delta-debugging consists
on finding the smallest 𝑥′ such that 𝑓(𝑥′) still fails.

Useful to reduce the complexity of the input

Somehow related to abductive explanations you saw yesterday in Session 3

Bugfixing Neural Networks 2025-07-03 41 / 73

Delta-debugging

Application: finding bugs in neural networks verifiers (Elsaleh and Katz 2023)
The input is then the network that goes through numerous simplifications/
modifications passes

Obtained neural networks are very thin, which shows that neural network
verifiers are still yet to mature

Bugfixing Neural Networks 2025-07-03 42 / 73

Encoding constraints during
training

Differentiable Logics

(Ślusarz et al. 2023) being a good introductory paper

Let Φ = 𝑃(𝒳) ⊧ 𝑄(𝒴)

Given a condition Φ to hold, one wants to generate ℒΦ such that a network
trained with ℒ = ℒacc +ℒΦ will both perform its intended purpose and
respects Φ!

Bugfixing Neural Networks 2025-07-03 44 / 73

Differentiable Logics

Two components:

• encode Φ (QF_LRA? Convex sets? More complex logical languages¹?)

• interpret Φ as an actual loss ℒΦ

¹See Benedikt and Daniel’s course, or the Datalog one

Bugfixing Neural Networks 2025-07-03 45 / 73

Differentiable Logics

What we would need: write local robustness under Φ
• defines vectors
• unbounded quantifiers
• defined domains for propositional variables

Bugfixing Neural Networks 2025-07-03 46 / 73

Differentiable Logics

(Ślusarz et al. 2023) provides a Logics for Differentiable Logics that provides
automated translation of logical formulaes to actual function losses

Implemented in the Vehicle (Daggitt et al. 2024) language and tool

Bugfixing Neural Networks 2025-07-03 47 / 73

Differentiable Logics

ℐ(𝑎1 < 𝑎2) ≔ 1 −max(
𝑎1−𝑎2
𝑎1+𝑎2
, 0)

ℐ(𝑝1 ∧ p2) ≔ ℐ(𝑝1) ∗ ℐ(𝑝2)

ℐ(𝑝1 ⇒ 𝑝2) ≔ 1 − ℐ(𝑝1) + ℐ(𝑝1) ∗ ℐ(𝑝2)

Thus, local robustness would be:

ℐ(|𝑓(𝑥) − 𝑓(𝑥′)| ≤ 𝛿) = 1 −max(|𝑓(𝑥)−𝑓(𝑥
′)|−𝛿

(|𝑓(𝑥)−𝑓(𝑥′)|+𝛿) , 0)

With Vehicle:

@property
robust : Vector Bool n
robust = foreach i . robustAround
 (trainingData ! i) (trainingLabels ! i)

Bugfixing Neural Networks 2025-07-03 48 / 73

Differentiable Logics

ℐ(𝑎1 < 𝑎2) ≔ 1 −max(
𝑎1−𝑎2
𝑎1+𝑎2
, 0)

ℐ(𝑝1 ∧ p2) ≔ ℐ(𝑝1) ∗ ℐ(𝑝2)

ℐ(𝑝1 ⇒ 𝑝2) ≔ 1 − ℐ(𝑝1) + ℐ(𝑝1) ∗ ℐ(𝑝2)

Thus, local robustness would be:

ℐ(|𝑓(𝑥) − 𝑓(𝑥′)| ≤ 𝛿) = 1 −max(|𝑓(𝑥)−𝑓(𝑥
′)|−𝛿

(|𝑓(𝑥)−𝑓(𝑥′)|+𝛿) , 0)

With Vehicle:

@property
robust : Vector Bool n
robust = foreach i . robustAround
 (trainingData ! i) (trainingLabels ! i)

This then can be compiled directly to Python

from vehicle_lang.compile import Target,
to_python

spec = to_python(
 "mnist-robustness.vcl",
 target=Target.LOSS_DL2,
 samplers={"pertubation":
sampler_for_pertubation},
)

robust_loss_fn = spec["robust"]

Bugfixing Neural Networks 2025-07-03 48 / 73

On LLMs and scoping your
systems

Source of all following image: https://limitesnumeriques.fr/travaux-
productions/ai-forcing (in french)

https://limitesnumeriques.fr/travaux-productions/ai-forcing
https://limitesnumeriques.fr/travaux-productions/ai-forcing

Requirements (or the lack of thereof)

Bugfixing Neural Networks 2025-07-03 54 / 73

Requirements (or the lack of thereof)

See how Copilot can be used to help for software engineering
• https://github.com/dotnet/runtime/pull/115762
• https://github.com/dotnet/runtime/pull/115743
• https://github.com/dotnet/runtime/pull/115733

Bugfixing Neural Networks 2025-07-03 55 / 73

https://github.com/dotnet/runtime/pull/115762
https://github.com/dotnet/runtime/pull/115743
https://github.com/dotnet/runtime/pull/115733

Requirements (or the lack of thereof)

Conflation of words between « AI Safety » and « Software Risks »

The term “safety” has come to have a multitude of definitions within AI, which vary based on the
context and the community. These definitions have not fully captured the broader meaning of
“safety” used within the fields of Systems and Safety Engineering, and may in fact be a direct
contradiction to it. Within the context of AI communities, some have defined “safety” as the
prevention of failures due to accidents, while others refer to the field of Alignment, aiming to
steer AI systems toward human-oriented values and goals. Not only are Alignment measures
subjective at best, but they fundamentally conflate safety properties with system requirements,
which are well-established engineering concepts.

— From (Khlaaf 2023)

Bugfixing Neural Networks 2025-07-03 56 / 73

Requirements (or the lack of thereof)

• Unscoped programs cannot be properly tested
• Most of LLMs discourse in the industry does not define bounds on the

system operation
• Some work on Software Engineering: Operational Design Domain¹

¹See https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32022R1426

Bugfixing Neural Networks 2025-07-03 57 / 73

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32022R1426

Requirements (or the lack of thereof)

MLflow comment on GenAI

Bugfixing Neural Networks 2025-07-03 58 / 73

⚠ 🔥 Personal Take Alarm 🔥 ⚠
Only my personal opinion on the next slide

Please discuss

• Current LLMs design principles and implementations are adverse for
verification and proper software engineering
‣ Yet they are deployed

• I see little value on systems that are not working, which quality is difficult
to assess and control, put a heavy toll on planetary resources and
societies

• Hot take steming from (Bender et al. 2021), (Varoquaux, Luccioni, and
Whittaker 2025) and (Crawford 2021)

⚠ 🔥 Personal Take Alarm 🔥 ⚠

Discussions and future
trends

On the importance of a good testing scenario

• Ensuring good coverage on the scenario
• Having a specification of your system operation is crucial (Khlaaf 2023)
‣ That is why it is impossible to test LLMs, as they are usually unscoped

and unbounded

Bugfixing Neural Networks 2025-07-03 63 / 73

Formal verification has a card to play

• Checking crucial instances is worthy on critical settings

• Runtime prevents for now of applying this to large networks on a large set
of points

Bugfixing Neural Networks 2025-07-03 64 / 73

Open questions

Testing
• How to specify which scenarios to generate?

Debugging
• Can we « keep repairing » until we achieve 100% accuracy?
• Extend the search to multiple architectures?
‣ How to encode that problem?

Logical constraints
• How much of Φ can be compiled to a loss ℒ?
‣ Is the network any good at learning the constraint?

Bugfixing Neural Networks 2025-07-03 65 / 73

Bibliography
Adjed, Faouzi, Mallek Mziou-Sallami, Frédéric Pelliccia, Mehdi Rezzoug, Lucas

Schott, Christophe Bohn, and Yesmina Jaafra. 2022. “Coupling Algebraic
Topology Theory, Formal Methods and Safety Requirements toward a
New Coverage Metric for Artificial Intelligence Models”. Neural Computing
and Applications, May. Springer Science, Business Media LLC. doi:10.1007/
s00521-022-07363-6.

Bender, Emily M., Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. 2021. “On the Dangers of Stochastic Parrots: Can Language
Models Be Too Big? 🦜”. In Proceedings of the 2021 ACM Conference on
Fairness, Accountability, And Transparency, 610–623. Facct '21. Virtual

Bugfixing Neural Networks 2025-07-03 66 / 73

https://doi.org/10.1007/s00521-022-07363-6
https://doi.org/10.1007/s00521-022-07363-6

Event, Canada: Association for Computing Machinery.
doi:10.1145/3442188.3445922.

Crawford, Kata. 2021. The Atlas of AI: Power, Politics, And the Planetary Costs
of Artificial Intelligence. Yale University Press. doi:10.2307/j.ctv1ghv45t.

Daggitt, Matthew L., Wen Kokke, Robert Atkey, Natalia Slusarz, Luca Arnaboldi,
and Ekaterina Komendantskaya. 2024. “Vehicle: Bridging the Embedding
Gap in the Verification of Neuro-Symbolic Programs”. arXiv. doi:10.48550/
ARXIV.2401.06379.

Deng, Yao, Xi Zheng, Tianyi Zhang, Huai Liu, Guannan Lou, Miryung Kim, and
Tsong Yueh Chen. 2023. “A Declarative Metamorphic Testing Framework

Bugfixing Neural Networks 2025-07-03 67 / 73

https://doi.org/10.1145/3442188.3445922
https://doi.org/10.2307/j.ctv1ghv45t
https://doi.org/10.48550/ARXIV.2401.06379
https://doi.org/10.48550/ARXIV.2401.06379

for Autonomous Driving”. IEEE Transactions on Software Engineering 49
(4): 1964–1982. doi:10.1109/TSE.2022.3206427.

Dijkstra, E.W. 1976. A Discipline of Programming. Prentice-Hall Series in
Automatic Computation. Prentice-Hall.

Dola, Swaroopa, Matthew B. Dwyer, and Mary Lou Soffa. 2021. “Distribution-
Aware Testing of Neural Networks Using Generative Models”. In 2021 IEEE/
ACM 43rd International Conference on Software Engineering (ICSE), 226–
237. doi:10.1109/ICSE43902.2021.00032.

Elsaleh, Raya, and Guy Katz. 2023. “Delbugv: Delta-Debugging Neural
Network Verifiers”. arXiv. doi:10.48550/ARXIV.2305.18558.

Bugfixing Neural Networks 2025-07-03 68 / 73

https://doi.org/10.1109/TSE.2022.3206427
https://doi.org/10.1109/ICSE43902.2021.00032
https://doi.org/10.48550/ARXIV.2305.18558

Goldberger, Ben, Guy Katz, Yossi Adi, and Joseph Keshet. 2020. “Minimal
Modifications of Deep Neural Networks Using Verification”. In Lpar23.
LPAR-23: 23rd International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, edited by Elvira Albert and Laura
Kovacs, 73:260–278. Epic Series in Computing. EasyChair.
doi:10.29007/699q.

Katz, Guy, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
2017. “Reluplex: An Efficient SMT Solver for Verifying Deep Neural
Networks”. In Computer Aided Verification, 97–117. Springer International
Publishing. doi:10.1007/978-3-319-63387-9_5.

Bugfixing Neural Networks 2025-07-03 69 / 73

https://doi.org/10.29007/699q
https://doi.org/10.1007/978-3-319-63387-9_5

Khlaaf, Heidy. 2023. Toward Comprehensive Risk Assessments and
Assurance of AI-Based Systems. https://www.trailofbits.com/
documents/Toward_comprehensive_risk_assessments.pdf.

Lemesle, Augustin, Aymeric Varasse, Zakaria Chihani, and Dominique
Tachet. 2023. “AIMOS: Metamorphic Testing of AI - AnIndustrial
Application”. WAISE 2023.

Pei, Kexin, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. “Deepxplore:
Automated Whitebox Testing of Deep Learning Systems”. In Proceedings
of the 26th Symposium on Operating Systems Principles, 1–18. SOSP '17.
Shanghai, China: Association for Computing Machinery.
doi:10.1145/3132747.3132785.

Bugfixing Neural Networks 2025-07-03 70 / 73

https://www.trailofbits.com/documents/Toward_comprehensive_risk_assessments.pdf
https://www.trailofbits.com/documents/Toward_comprehensive_risk_assessments.pdf
https://doi.org/10.1145/3132747.3132785

Refaeli, Idan, and Guy Katz. 2021. “Minimal Multi-Layer Modifications of Deep
Neural Networks”. arXiv. doi:10.48550/arXiv.2110.09929.

Sun, Youcheng, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska,
and Daniel Kroening. 2018. “Concolic Testing for Deep Neural Networks”. In
Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 109–119. New York, NY, USA: Association
for Computing Machinery. https://doi.org/10.1145/3238147.3238172.

Tian, Yuchi, Kexin Pei, Suman Jana, and Baishakhi Ray. 2017. “Deeptest:
Automated Testing of Deep-Neural-Network-Driven Autonomous Cars”.
Corr. http://arxiv.org/abs/1708.08559.

Bugfixing Neural Networks 2025-07-03 71 / 73

https://doi.org/10.48550/arXiv.2110.09929
https://doi.org/10.1145/3238147.3238172
http://arxiv.org/abs/1708.08559

Varoquaux, Gaël, Alexandra Sasha Luccioni, and Meredith Whittaker. 2025.
“Hype, Sustainability, And the Price of the Bigger-Is-Better Paradigm in
AI”. arXiv. doi:10.48550/arXiv.2409.14160.

Zech, John R., Marcus A. Badgeley, Manway Liu, Anthony B. Costa, Joseph J.
Titano, and Eric Karl Oermann. 2018. “Variable Generalization
Performance of a Deep Learning Model to Detect Pneumonia in Chest
Radiographs: A Cross-Sectional Study”. Edited by Aziz Sheikh. PLOS
Medicine 15 (11). Public Library of Science (PLoS): e1002683. doi:10.1371/
journal.pmed.1002683.

Zeller, A., and R. Hildebrandt. 2002. “Simplifying and Isolating Failure-
Inducing Input”. IEEE Transactions on Software Engineering 28 (2).

Bugfixing Neural Networks 2025-07-03 72 / 73

https://doi.org/10.48550/arXiv.2409.14160
https://doi.org/10.1371/journal.pmed.1002683
https://doi.org/10.1371/journal.pmed.1002683

Institute of Electrical, Electronics Engineers (IEEE): 183–200.
doi:10.1109/32.988498.

Zhang, Mengshi, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz
Khurshid. 2018. “DeepRoad: GAN-Based Metamorphic Testing and Input
Validation Framework for Autonomous Driving Systems”. Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering. New York, NY, USA: Association for Computing Machinery.
https://doi.org/10.1145/3238147.3238187.

Ślusarz, Natalia, Ekaterina Komendantskaya, Matthew L. Daggitt, Robert
Stewart, and Kathrin Stark. 2023. “Logic of Differentiable Logics: Towards a
Uniform Semantics of Dl.”

Bugfixing Neural Networks 2025-07-03 73 / 73

https://doi.org/10.1109/32.988498
https://doi.org/10.1145/3238147.3238187

	Recaps on previous course
	This session

	A brief introduction on testing
	First introduction of testing on ML
	Testing for neural network - the question of scenario
	Another approach: Metamorphic testing
	Metamorphic testing with AIMOS
	Industrial tools for testing ML
	Fundamental limitation of testing

	On the interest of bugfixing with formal verification
	Bugfixing?
	Why bugfixing in the first place?
	Formal verification to the rescue
	Definition
	Exemple
	Rephrasing the problem
	Initial limitations
	Multi-layer reparation
	Delta-debugging

	Encoding constraints during training
	Certified training
	Differentiable Logics

	On LLMs and scoping your systems
	Requirements (or the lack of thereof)

	Discussions and future trends
	On the importance of a good testing scenario
	Formal verification has a card to play
	Open questions
	Testing
	Debugging
	Logical constraints

	Bibliography

