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Recaps on previous course



Local robustness (Katz et al. 2017)

Let a classifier 𝑓 : 𝒳 ↦ 𝒴. Given 𝑥 ∈ 𝒳 and 𝜀 ∈ ℝ⋘ 1 the problem of local
robustness is to prove that ∀𝑥′. ‖𝑥 − 𝑥′‖𝑝 < 𝜀 → 𝑓(𝑥) = 𝑓(𝑥′)
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𝐿1(𝑥) = ∑𝑖|𝑥𝑖|
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This session

1. Testing neural networks with logical relations
2. Bugfixing neural networks, with guarantees
3. Encoding logical constraints within neural networks
4. Open questions on properly evaluating the « quality » of ML programs
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A brief introduction on
testing



How do you ensure your program « works well »?

What are the most common bugs/malfunctions you encounter?



How do you ensure your program « works well »?

What are the most common bugs/malfunctions you encounter?

• numerical instabilities that invalidated two submissions we tried to
reproduce

• debugging shapes : funniest thing to do ever 🤠



(Zech et al. 2018) 😊 ← actually dead inside



First introduction of testing on ML

𝛿 = acctrain − acctest (replace accuracy by other suitable metric in RL or
unsupervised learning)
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First introduction of testing on ML

Testing a program

The activity of running a program on a predefined scenario, and assess the program’s
output against an expected behaviour (an oracle)

• which scenarios?

‣ how do they generalize?

• what is the expected behaviour under test?

• how can the test exhibit and help us understand a program failure?
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First introduction of testing on ML

Testing a program

The activity of running a program on a predefined scenario, and assess the program’s
output against an expected behaviour (an oracle)

• which scenarios?
‣ on unseen test data
‣ how do they generalize?

– good question!
• what is the expected behaviour under test?
‣ controlled metric degradation

• how can the test exhibit and help us understand a program failure?
‣ identify spurious counterexample?

Bugfixing Neural Networks 2025-07-03 9 / 73



Testing for neural network - the question of
scenario

Crucial component of testing is to identify the correct scenarios

Since the search space is enormous, one needs to find relevant scenarios
(accidents are hopefully rare in a dataset drawn from real life)
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Testing for neural network - the question of
scenario

Crucial component of testing is to identify the correct scenarios

Since the search space is enormous, one needs to find relevant scenarios
(accidents are hopefully rare in a dataset drawn from real life)

Generating scenarios!
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Testing for neural network - the question of
scenario

Impact of generated scenarios (from (Zhang et al. 2018))

Other examples (Pei et al. 2017; Sun et al. 2018; Tian et al. 2017; Dola, Dwyer, and Soffa 2021; Adjed
et al. 2022)
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Another approach: Metamorphic testing

Certain relationships (e.g., 𝑅1, 𝑅2) on
some inputs (e.g., 𝑎, 𝑏, 𝑐) should
induce, in a software 𝑆 , other
relationships (e.g., 𝑅′1, 𝑅′2)

∀𝑎, 𝑏, 𝑐, 𝑅1(𝑎, 𝑏) ∧ 𝑅2(𝑏, 𝑐) ⇒
𝑅′1(𝑆(𝑎), 𝑆(𝑏)) ∨ 𝑅′2(𝑆(𝑏), 𝑆(𝑐)

Example: computing the shortest
path between two nodes on an
undirected graph should be
impervious to symmetry
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Another approach: Metamorphic testing

Blur images are not expected to be
under the system scope
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Metamorphic testing with AIMOS

AIMOS: AI Metamorphic Observing
Software (Lemesle et al. 2023)

Assess the stability of a welding
production line (in particular: able to
spot that a model was performing
too well outside of its dedicated
scope)
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Metamorphic testing with AIMOS

Try AIMOS at https://caisar-platform.com/aimos-demo
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Metamorphic testing with AIMOS

A declarative framework for Metamorphic Testing (Deng et al. 2023) with automated rule
inference from natural language and generative AI for scenario generation
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Industrial tools for testing ML

MLflow: one state-of-the-art platform for evaluating and monitoring machine learning
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« Program testing can be used very
effectively to show the presence of
bugs but never to show their
absence.» (Dijkstra 1976)



On the interest of bugfixing
with formal verification



Bugfixing?

Bugfixing neural networks

Given an input 𝑥, a neural network 𝑓 , a faulty prediction 𝑓(𝑥) = 𝑦false and
an expected prediction 𝑦true, bugfixing means constructing a new 𝑓 ′
such that 𝑓 ′(𝑥) = 𝑦true
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Why bugfixing in the first place?

• Retraining may be too costly
• Some behaviours must be preserved
• Particular datapoints must absolutely not fail
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Formal verification to the rescue
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Definition

Guaranteed Neural Network repair (Goldberger et al. 2020)

Given a NN 𝑓 : 𝑥 → 𝑦, a collection of inputs 𝒳 = {𝑥1,…, 𝑥𝑝}, a precondition
that holds on all inputs 𝑃(𝒳) and a postcondition on all outputs 𝑄(𝒴),
find a new DNN 𝑓 ′ such that 𝑃(𝒳) ⊧ 𝑄(𝒴) and that the distance between
𝑓  and 𝑓 ′ is minimal.

Note that, as with local robustness (see Session 2), this property is local
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Exemple

Computing the distance between 𝑓  …

𝑛00

𝑛01

𝑛00 𝑛10

𝑛01 𝑛11

𝑛10 𝑛20

𝑛11 𝑛21

−1

1

−2 2

1

1

−1 −1
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Exemple

… and 𝑓 ′:

𝑛00

𝑛01

𝑛00 𝑛10

𝑛01 𝑛11

𝑛10 𝑛20

𝑛11 𝑛21

1.5

1 −3

−0.5

1

0.5

−1 −1.5

Bugfixing Neural Networks 2025-07-03 23 / 73



Exemple

… and 𝑓 ′:

𝑛00

𝑛01

𝑛00 𝑛10

𝑛01 𝑛11

𝑛10 𝑛20

𝑛11 𝑛21

−1

1

−2 2

1

1

−1 −1

1.5

1 −3

−0.5

1

0.5

−1 −1.5

‖𝑓 − 𝑓{′}‖𝐿 = ∑
𝑛
{𝑖=2}∑{𝑗=1}∑{𝑘=1}|𝑊𝑖[𝑗,𝑘] −𝑊

{′}
𝑖 [𝑗, 𝑘]|𝐿
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Exemple

… and 𝑓 ′:

𝑛00

𝑛01

𝑛00 𝑛10

𝑛01 𝑛11

𝑛10 𝑛20

𝑛11 𝑛21

−1

1

−2 2

1

1

−1 −1

1.5

1 −3

−0.5

1

0.5

−1 −1.5

‖𝑓 − 𝑓{′}‖𝐿 = ∑
𝑛
{𝑖=2}∑{𝑗=1}∑{𝑘=1}|𝑊𝑖[𝑗,𝑘] −𝑊

{′}
𝑖 [𝑗, 𝑘]|𝐿

|1 − 1.5| + | − 2 + 3| + |2 − 1| + | − 1 + 0.5| + |1 − 0.5| + | − 1 + 1.5| + | − 1 + 1| + |1 − 1| =
|0.5| + |1| + |1| + | − 0.5| + |0.5| + |0.5| + 0 + 0 = 4
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Exemple

Find the best 𝑤𝑖

𝑛00

𝑛01

𝑛00 𝑛10

𝑛01 𝑛11

𝑛10 𝑛20

𝑛11 𝑛21

−1+𝑤4

1+𝑤1

−2+𝑤3 2+𝑤2

1+𝑤5

1+𝑤8

−1+𝑤7 −1+𝑤6

Search space is now no more the inputs, but the weights
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Exemple

𝑛00

𝑛01

𝑛00 𝑛10

𝑛01 𝑛11

𝑛10 𝑛20

𝑛11 𝑛21

−1+𝑤4

1+𝑤1

−2+𝑤3 2+𝑤2

1+𝑤5

1+𝑤8

−1+𝑤7 −1+𝑤6

𝑛10 = ReLU(1 + 𝑤1)𝑛01 +ReLU(−2 + 𝑤3)𝑛00
𝑛11 = ReLU(2 + 𝑤2)𝑛01 +ReLU(−1 + 𝑤4)𝑛00
𝑛20 = ReLU(1 + 𝑤5)𝑛10 +ReLU(−1 + 𝑤7)𝑛11
𝑛21 = ReLU(−1 + 𝑤6)𝑛10 +ReLU(1 + 𝑤8)𝑛11

Providing we want to get 𝑛21 ≥ 𝑛20, that is to say,
ensure that

ReLU(−1 + 𝑤6)𝑛10 +ReLU(1 + 𝑤8)𝑛11 ≥

ReLU(1 + 𝑤5)𝑛10 +ReLU(−1 + 𝑤7)𝑛11
=
ReLU(−1 + 𝑤6)(ReLU(1 + 𝑤1)𝑛01 +ReLU(−2 + 𝑤3)𝑛00) +

ReLU(1 + 𝑤8)(ReLU(2 + 𝑤2)𝑛01 +ReLU(−1 + 𝑤4)𝑛00) ≥

ReLU(1 + 𝑤5)(ReLU(1 + 𝑤1)𝑛01 +ReLU(−2 + 𝑤3)𝑛00) +

ReLU(−1 + 𝑤7)(ReLU(2 + 𝑤2)𝑛01 +ReLU(−1 + 𝑤4)𝑛00)
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Rephrasing the problem

Key insight: for a given set of inputs, the network is in a fixed state
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Rephrasing the problem

𝑛00

𝑛01

𝑛00 𝑛10

𝑛01 𝑛11

𝑛10 𝑛20

𝑛11 𝑛21

−1+𝑤4

1+𝑤1

−2+𝑤3 2+𝑤2

1

1

−1 −1

Given 𝑛01 = 3 and 𝑛00 = 4

𝑛10 = (1 + 𝑤1)3 + (−2 + 𝑤3)4

𝑛11 = (2 + 𝑤2)3 + (−1 + 𝑤4)4

𝑛20 = ReLU(𝑛10) + ReLU(−𝑛11)

𝑛21 = ReLU(−𝑛10) + ReLU(𝑛11)
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Rephrasing the problem

𝑛00

𝑛01

𝑛00 𝑛10

𝑛01 𝑛11

𝑛10 𝑛20

𝑛11 𝑛21

−1+𝑤4

1+𝑤1

−2+𝑤3 2+𝑤2

1

1

−1 −1

Given 𝑛01 = 3 and 𝑛00 = 4

𝑛10 = (1 + 𝑤1)3 + (−2 + 𝑤3)4

𝑛11 = (2 + 𝑤2)3 + (−1 + 𝑤4)4

𝑛20 = ReLU(3𝑤1 + 4𝑤3 − 5) − ReLU(3𝑤2 + 4𝑤4 + 2)

𝑛21 = −ReLU(3𝑤1 + 4𝑤3 − 5) + ReLU(3𝑤2 + 4𝑤4 + 2)
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Rephrasing the problem

𝑛00

𝑛01

𝑛00 𝑛10

𝑛01 𝑛11

𝑛10 𝑛20

𝑛11 𝑛21

−1+𝑤4

1+𝑤1

−2+𝑤3 2+𝑤2

1

1

−1 −1

Then, checking whether 𝑛21 ≥ 𝑛20 is a
problem only in the variables 𝑤𝑖

Given 𝑛01 = 3 and 𝑛00 = 4

𝑛10 = (1 + 𝑤1)3 + (−2 + 𝑤3)4

𝑛11 = (2 + 𝑤2)3 + (−1 + 𝑤4)4

𝑛20 = ReLU(3𝑤1 + 4𝑤3 − 5) − ReLU(3𝑤2 + 4𝑤4 + 2)

𝑛21 = −ReLU(3𝑤1 + 4𝑤3 − 5) + ReLU(3𝑤2 + 4𝑤4 + 2)

Bugfixing Neural Networks 2025-07-03 27 / 73



Rephrasing the problem

𝑛00

𝑛01

𝑛00 𝑛10

𝑛01 𝑛11

𝑛10 𝑛20

𝑛11 𝑛21

−1+𝑤4

1+𝑤1

−2+𝑤3 2+𝑤2

1

1

−1 −1

Then, checking whether 𝑛21 ≥ 𝑛20 is a
problem only in the variables 𝑤𝑖
𝑃 = ⋀4

𝑖=1
−𝛿 ≤ 𝑤𝑖 ≤ 𝛿,𝑄 = 𝑛21 ≥ 𝑛20

Given 𝑛01 = 3 and 𝑛00 = 4

𝑛10 = (1 + 𝑤1)3 + (−2 + 𝑤3)4

𝑛11 = (2 + 𝑤2)3 + (−1 + 𝑤4)4

𝑛20 = ReLU(3𝑤1 + 4𝑤3 − 5) − ReLU(3𝑤2 + 4𝑤4 + 2)

𝑛21 = −ReLU(3𝑤1 + 4𝑤3 − 5) + ReLU(3𝑤2 + 4𝑤4 + 2)
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Rephrasing the problem

𝑏1

𝑤1

𝑤3

𝑤2

𝑤4

𝑏1

𝑛10

𝑛11

𝑛20

𝑛21

−5

3

4

3

4

2

1

−1 −1

1

𝑃 = ⋀4
𝑖=1
−𝛿 ≤ 𝑤𝑖 ≤ 𝛿,𝑄 = 𝑛21 ≥ 𝑛20

Given 𝑛01 = 3 and 𝑛00 = 4

𝑛10 = (1 + 𝑤1)3 + (−2 + 𝑤3)4

𝑛11 = (2 + 𝑤2)3 + (−1 + 𝑤4)4

𝑛20 = ReLU(3𝑤1 + 4𝑤3 − 5) −
ReLU(3𝑤2 + 4𝑤4 + 2)

𝑛21 = −ReLU(3𝑤1 + 4𝑤3 − 5) +
ReLU(3𝑤2 + 4𝑤4 + 2)
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Rephrasing the problem

𝑏1

𝑤1

𝑤3

𝑤2

𝑤4

𝑏1

𝑛10

𝑛11

𝑛20

𝑛21

−5

3

4

3

4

2

1

−1 −1

1

𝑃 = ⋀4
𝑖=1
−𝛿 ≤ 𝑤𝑖 ≤ 𝛿,𝑄 = 𝑛21 ≥ 𝑛20

Given 𝑛01 = 3 and 𝑛00 = 4

𝑛10 = (1 + 𝑤1)3 + (−2 + 𝑤3)4

𝑛11 = (2 + 𝑤2)3 + (−1 + 𝑤4)4

𝑛20 = ReLU(3𝑤1 + 4𝑤3 − 5) −
ReLU(3𝑤2 + 4𝑤4 + 2)

𝑛21 = −ReLU(3𝑤1 + 4𝑤3 − 5) +
ReLU(3𝑤2 + 4𝑤4 + 2)

Local robustness on the weights!

Bugfixing Neural Networks 2025-07-03 28 / 73



Rephrasing the problem
Bugfixing NN(network 𝑓, Precondition 𝑃, Postcondition 𝑄, Collection of inputs 𝒳, Layer 𝐿):
1 𝑓 ′ = 𝑓
2 l = []
3 for 𝑥 in 𝒳:
4 if CHECK(𝑓 ′,𝑃,𝑄,𝑥) == SAT then:
5 APPEND(l,𝑓 ′)
6 else:
7 𝑔 = BUILD_SYMBOLIC_WEIGHT_NET(𝑓 ′,𝑃,𝑄,𝐿)
8 𝑓 ′ = ASSIGN_WEIGHTS(𝑓 ′,𝑤,𝑃,𝑄) // NN with weights tricks
9 CHECK(𝑓 ′,𝑃,𝑄,𝑥)

10
11 𝑓″ = COMBINE_NETS(l)
12 if CHECK(𝑓″,P,Q):
13 return 𝑓″

14 else:
15 RESTART
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Find the minimal weights
perturbations that preserves a
neural network behaviour



Initial limitations

From (Goldberger et al. 2020). Large modifications result in neural network degradation
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Initial limitations

From (Goldberger et al. 2020). Several days to fix three inputs seems too much…
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Initial limitations

Why is so? Because actually encoding « Preserve the accuracy » is a difficult
property that cannot be expressed with convex sets!
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Initial limitations

We still want to preserve the benefits of formal bugfixing!
• No need to retrain the network
• Guarantee to keep behaviours on given inputs

Main limitations:
• Modifying only one single layer limits the scope of our debugging
• Prover queries can be expensive (See Session 2 on theoretical complexity)
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Multi-layer reparation

A neural network 𝑓  is considered a composition of subnetworks 𝑓𝑘 such that
𝑓 = 𝑓0 ∘ 𝑓1 ∘ 𝑓2… ∘ 𝑓𝑝. The output layer of 𝑓𝑘−1 is the input layer of 𝑓𝑘. This layer
is present in the original network as 𝐿𝑖.
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Multi-layer reparation

A neural network 𝑓  is considered a composition of subnetworks 𝑓𝑘 such that
𝑓 = 𝑓0 ∘ 𝑓1 ∘ 𝑓2… ∘ 𝑓𝑝. The output layer of 𝑓𝑘−1 is the input layer of 𝑓𝑘. This layer
is present in the original network as 𝐿𝑖.

Each single layer modification procedure is then launched on the 𝑓𝑘s, their
distance against the original 𝑓𝑘 is computed and summed up.
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Multi-layer reparation

A neural network 𝑓  is considered a composition of subnetworks 𝑓𝑘 such that
𝑓 = 𝑓0 ∘ 𝑓1 ∘ 𝑓2… ∘ 𝑓𝑝. The output layer of 𝑓𝑘−1 is the input layer of 𝑓𝑘. This layer
is present in the original network as 𝐿𝑖.

Each single layer modification procedure is then launched on the 𝑓𝑘s, their
distance against the original 𝑓𝑘 is computed and summed up.

To reuse Single Layer Repair, we need to provide input/output constraints to
intermediate layers
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Multi-layer reparation

𝑛00

𝑛10

𝑛11

𝑛20

𝑛21

1

1

0.01

100

𝑛30

𝑛31

𝑛40

𝑛41

1000

0.01

1

−11

−1
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Multi-layer reparation

𝑛00

𝑛10

𝑛11

𝑛20

𝑛21

1

1

0.01

100

𝑛30

𝑛31

𝑛40

𝑛41

1000

0.01

1

−11

−1𝑓1 𝑓2
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Multi-layer reparation

𝑛00

𝑛10

𝑛11

𝑛20

𝑛21

1

1

0.01

100

𝑛30

𝑛31

𝑛40

𝑛41

1000

0.01

1

−11

−1𝑓1 𝑓2

Bugfixing Neural Networks 2025-07-03 34 / 73



Multi-layer reparation

𝑛00

𝑛10

𝑛11

𝑛20

𝑛21

1

1

0.01

100 𝑓1

𝑛20

𝑛21

𝑛30

𝑛31

𝑛40

𝑛41

1000

0.01

1

−11

−1 𝑓2
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Multi-layer reparation

𝑛00

𝑛10

𝑛11

𝑛20

𝑛21

1

1

0.01

100

0.01

100
1

𝑓1

𝑛20

𝑛21

𝑛30

𝑛31

𝑛40

𝑛41

1000

0.01

1
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𝑛00 = 1 ⇒ 𝑛41 = 11 > 𝑛40 = −11.

Target behaviour for 𝑛00 : 𝑛41 < 𝑛40
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𝑛00 = 1 ⇒ 𝑛41 = 11 > 𝑛40 = −11.

Target behaviour for 𝑛00 : 𝑛41 < 𝑛40
Three main steps:
1. Assign modified input and

outputs bounds to each
subnetwork

2. Perform 1-layer verification
query to reach the expected
behaviour

3. Combine all 1-layer
modifications
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Multi-layer reparation
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Target behaviour: 𝑛41 < 𝑛40
1. Propose assignemts:

• 𝑓1 : 𝑛20 = 0 (𝑛21 stay
unchanged)

• 𝑓2 : 𝑛40 < 𝑛41
2. Apply Single Layer Repair on 𝑓1

and 𝑓2
3. Merge 𝑓 ′1 and 𝑓 ′2
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Multi-layer reparation

Multi-layer DNN bugfixing(network 𝑓, Collection of inputs 𝒳, Layer indices ℐ, timeout 𝑡):
1 for 𝑗 in card(𝒳):
2 assigns = 𝑓(𝑥𝑗) // Compute value assignments for each layer
3 𝑓0,…, 𝑓𝑘 = SPLIT(𝑓, ℐ)
4 best_change, best_cost = ⊥, ∞
5 while 𝑡 not exceeded:
6 for 𝑙 ∈ ℐ:
7 𝑐𝑙 = PROPOSE_CHANGE()
8 for 𝑗 in card(𝒳):
9 assigns = assigns + 𝑐𝑙 // New assignments to prepare SLD

10 for 𝑙 ∈ ℐ:
11 𝑓 ′𝑙 , cost𝑙=SLD(𝑓 ′0, < 𝑥0, assigns0 >,…,< 𝑥𝐿, assigns𝑙 >) // Perform Single Layer Debugging
12 cost = TOTAL_COST(cost0,…,cost𝑘)
13 if cost < best_cost:
14 best_cost = cost
15 best_change =< 𝑓 ′0,…, 𝑓 ′𝑘 >
16 return best_cost, COMBINE(best_change)
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Multi-layer reparation

How to propose assignments?

Existing approaches use random search (but could be enhanced)!
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Multi-layer reparation

From (Goldberger et al. 2020). Large
modifications result in neural network

degradation
From (Refaeli and Katz 2021) . Proper search

space pruning with MCTS result in less
performance degradation.
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Delta-debugging

Delta-debugging (Zeller and Hildebrandt 2002)

Given an input 𝑥 and a program 𝑓  that fails, delta-debugging consists
on finding the smallest 𝑥′ such that 𝑓(𝑥′) still fails.

Useful to reduce the complexity of the input

Somehow related to abductive explanations you saw yesterday in Session 3

Bugfixing Neural Networks 2025-07-03 41 / 73



Delta-debugging

Application: finding bugs in neural networks verifiers (Elsaleh and Katz 2023)
The input is then the network that goes through numerous simplifications/
modifications passes

Obtained neural networks are very thin, which shows that neural network
verifiers are still yet to mature
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Encoding constraints during
training



Differentiable Logics

(Ślusarz et al. 2023) being a good introductory paper

Let Φ = 𝑃(𝒳) ⊧ 𝑄(𝒴)

Given a condition Φ to hold, one wants to generate ℒΦ such that a network
trained with ℒ = ℒacc +ℒΦ will both perform its intended purpose and
respects Φ!
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Differentiable Logics

Two components:

• encode Φ (QF_LRA? Convex sets? More complex logical languages¹?)

• interpret Φ as an actual loss ℒΦ

¹See Benedikt and Daniel’s course, or the Datalog one
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Differentiable Logics

What we would need: write local robustness under Φ
• defines vectors
• unbounded quantifiers
• defined domains for propositional variables
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Differentiable Logics

(Ślusarz et al. 2023) provides a Logics for Differentiable Logics that provides
automated translation of logical formulaes to actual function losses

Implemented in the Vehicle (Daggitt et al. 2024) language and tool
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Differentiable Logics

ℐ(𝑎1 < 𝑎2) ≔ 1 −max(
𝑎1−𝑎2
𝑎1+𝑎2
, 0)

ℐ(𝑝1 ∧ p2) ≔ ℐ(𝑝1) ∗ ℐ(𝑝2)

ℐ(𝑝1 ⇒ 𝑝2) ≔ 1 − ℐ(𝑝1) + ℐ(𝑝1) ∗ ℐ(𝑝2)

Thus, local robustness would be:

ℐ(|𝑓(𝑥) − 𝑓(𝑥′)| ≤ 𝛿) = 1 −max( |𝑓(𝑥)−𝑓(𝑥
′)|−𝛿

(|𝑓(𝑥)−𝑓(𝑥′)|+𝛿) , 0)

With Vehicle:

@property
robust : Vector Bool n
robust = foreach i . robustAround
  (trainingData ! i) (trainingLabels ! i)
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Thus, local robustness would be:

ℐ(|𝑓(𝑥) − 𝑓(𝑥′)| ≤ 𝛿) = 1 −max( |𝑓(𝑥)−𝑓(𝑥
′)|−𝛿

(|𝑓(𝑥)−𝑓(𝑥′)|+𝛿) , 0)

With Vehicle:

@property
robust : Vector Bool n
robust = foreach i . robustAround
  (trainingData ! i) (trainingLabels ! i)

This then can be compiled directly to Python

from vehicle_lang.compile import Target,
to_python

spec = to_python(
    "mnist-robustness.vcl",
    target=Target.LOSS_DL2,
    samplers={"pertubation":
sampler_for_pertubation},
)

robust_loss_fn = spec["robust"]
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On LLMs and scoping your
systems









Source of all following image: https://limitesnumeriques.fr/travaux-
productions/ai-forcing (in french)

https://limitesnumeriques.fr/travaux-productions/ai-forcing
https://limitesnumeriques.fr/travaux-productions/ai-forcing




Requirements (or the lack of thereof)
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Requirements (or the lack of thereof)

See how Copilot can be used to help for software engineering
• https://github.com/dotnet/runtime/pull/115762
• https://github.com/dotnet/runtime/pull/115743
• https://github.com/dotnet/runtime/pull/115733
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Requirements (or the lack of thereof)

Conflation of words between « AI Safety » and « Software Risks »

The term “safety” has come to have a multitude of definitions within AI, which vary based on the
context and the community. These definitions have not fully captured the broader meaning of
“safety” used within the fields of Systems and Safety Engineering, and may in fact be a direct
contradiction to it. Within the context of AI communities, some have defined “safety” as the
prevention of failures due to accidents, while others refer to the field of Alignment, aiming to
steer AI systems toward human-oriented values and goals. Not only are Alignment measures
subjective at best, but they fundamentally conflate safety properties with system requirements,
which are well-established engineering concepts.

— From (Khlaaf 2023)
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Requirements (or the lack of thereof)

• Unscoped programs cannot be properly tested
• Most of LLMs discourse in the industry does not define bounds on the

system operation
• Some work on Software Engineering: Operational Design Domain¹

¹See https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32022R1426
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Requirements (or the lack of thereof)

MLflow comment on GenAI
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⚠ 🔥 Personal Take Alarm 🔥 ⚠
Only my personal opinion on the next slide

Please discuss



• Current LLMs design principles and implementations are adverse for
verification and proper software engineering
‣ Yet they are deployed

• I see little value on systems that are not working, which quality is difficult
to assess and control, put a heavy toll on planetary resources and
societies

• Hot take steming from (Bender et al. 2021), (Varoquaux, Luccioni, and
Whittaker 2025) and (Crawford 2021)



⚠ 🔥 Personal Take Alarm 🔥 ⚠



Discussions and future
trends



On the importance of a good testing scenario

• Ensuring good coverage on the scenario
• Having a specification of your system operation is crucial (Khlaaf 2023)
‣ That is why it is impossible to test LLMs, as they are usually unscoped

and unbounded
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Formal verification has a card to play

• Checking crucial instances is worthy on critical settings

• Runtime prevents for now of applying this to large networks on a large set
of points
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Open questions

Testing
• How to specify which scenarios to generate?

Debugging
• Can we « keep repairing » until we achieve 100% accuracy?
• Extend the search to multiple architectures?
‣ How to encode that problem?

Logical constraints
• How much of Φ can be compiled to a loss ℒ?
‣ Is the network any good at learning the constraint?
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